, Volume 19, Issue 3, pp 463–486 | Cite as

Improving label placement quality by considering basemap detail with a raster-based approach

  • Maxim A. RylovEmail author
  • Andreas W. Reimer


Topographic maps are arguably one of the most information-dense, yet intuitively usable, graphical artifacts produced by mankind. Cartography as science and practice has developed and collected a wealth of design principles and techniques to cope with the problems of high graphical density, especially for the case of label placement. Many of the more sophisticated techniques that take into account figure-ground relationships for lettering have not been fully operationalized until now. We present a novel generic quality evaluation model that allows full automation of refined techniques for improving map feature overlap, visual contrast and layer hierarchy. We present the objective function as a set of metrics corresponding to the design principles and provide exemplary parameterization via the set of experiments on global real-world datasets. The approach designed for labeling of point-like objects and can potentially be applied to linear and areal features. It has a low computational and memory requirement. Furthermore, it is conceivably applicable to annotate any kind of visualization beyond maps. The results of the conducted tests and comparison with a commercial labeling package illustrate the ability to produce highly legible and readable map lettering with our approach. Presented method heeds more cartographic design principles and is computationally less costly compared to commercially available methods.


Automated label placement Automated cartography Quality evaluation Image segmentation GIS mapping 



The authors would like to warmly thank colleagues at our GIScience Research Group for productive discussions and their valuable feedback. We would like to express our particular appreciation to the anonymous reviewers whose constructive and helpful comments substantially improved the paper. Financial support as the scholarship from DAAD (Deutscher Akademischer Austauschdienst, German Academic Exchange Service) obtained by Maxim Rylov is gratefully acknowledged. Additional thanks go to Sarah Lohr for helping with the comparison of labeling results.


  1. 1.
    Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intel 16(6):641–647. doi: 10.1109/34.295913 CrossRefGoogle Scholar
  2. 2.
    Ahn J, Freeman H (1984) A program for automatic name placement. Cartographica 21(2–3):101–109. doi: 10.3138/0646-Q262-6636-3681 CrossRefGoogle Scholar
  3. 3.
    ASTER Validation Team (2011) ASTER Global Digital Elevation Model Version 2 – Summary of Validation Results. Published by the ASTER GDEM Validation Team: METI, NASA and USGS. August 2011, 27 pages. Available online at:
  4. 4.
    Barrault M (2001) A methodology for placement and evaluation of area map labels. Comput Environ Urban Syst 25(1):33–52. doi: 10.1016/S0198-9715(00)00039-9 CrossRefGoogle Scholar
  5. 5.
    Battista GD, Eades P, Tamassia R, Tollis IG (1994) Algorithms for drawing graphs: an annotated bibliography. Comput Geom: Theory Appl 4(5):235–282CrossRefGoogle Scholar
  6. 6.
    Been K, Daiches E, Yap C (2006) Dynamic map labeling. IEEE Trans Vis Comput Graphics 12(5):773–780. doi: 10.1109/TVCG.2006.136 CrossRefGoogle Scholar
  7. 7.
    Brewer CA (2005) Designing better maps: a guide for gis users. ESRI Press, Redlands CAGoogle Scholar
  8. 8.
    Brown B (1976) Effect of background constraint on visual search times. Ergonomics 19(4):441–449. doi: 10.1080/00140137608931556 CrossRefGoogle Scholar
  9. 9.
    Carstensen LW (1987) A comparison of simple mathematical approaches to the placement of spot symbols. Cartographica 24(3):46–63. doi: 10.3138/GH04-24H7-63T8-167V CrossRefGoogle Scholar
  10. 10.
    Castner HW, Eastman RJ (1985) Eye-movement parameters and perceived map complexity—ii. Am Cartographer 12(1):29–40. doi: 10.1559/152304085783914712 CrossRefGoogle Scholar
  11. 11.
    Christensen J, Marks J, Shieber S (1995) An empirical study of algorithms for point-feature label placement. ACM Trans Graph 14(3):203–232. doi: 10.1145/212332.212334 CrossRefGoogle Scholar
  12. 12.
    CIE (1978) Recommendations on uniform colour spaces, colour difference equations. CIE Publication, Psychometric Colour TermsGoogle Scholar
  13. 13.
    Cromley RG (1985) An LP relaxation procedure for annotating point features using interactive graphics In: proc. AutoCarto 7:127–132Google Scholar
  14. 14.
    Defence Geographic and Imagery Intelligence Agency (UK) (1973) Series ONC, Sheet F-3, Albania, Bosnia, etc., 1:1000000, Edition 14-GSGS, Reprinted by DGIA, Ministry of Defence, United Kingdom, 2000. Scan provided by University of Texas, Perry-Castañeda Library Map Collection. (accessed on October 22, 2013)
  15. 15.
    Doerschler JS, Freeman H (1992) A rule-based system for dense-map name placement. Commun Assoc Comput Mach 35(1):68–79. doi: 10.1145/129617.129620 Google Scholar
  16. 16.
    Edmondson S, Christensen J, Marks J, Shieber S (1996) A general cartographic labeling algorithm. Cartographica 33(4):13–24. doi: 10.3138/U3N2-6363-130N-H870 CrossRefGoogle Scholar
  17. 17.
    ESRI (2009) Maplex for ArcGIS. Paper, An ESRI White, Available at Google Scholar
  18. 18.
    Fairbairn D (2006) Measuring map complexity. Cartogr J 43(3):224–238. doi: 10.1179/000870406X169883 CrossRefGoogle Scholar
  19. 19.
    Freeman H (1991) Computer name placement. In: Maguire DJ, Goodchild MF, Rhind DW (eds) Geographical Information Systems: principles and applications. Longman, London, pp 445–456Google Scholar
  20. 20.
    Freeman H, Ahn J (1984) AUTONAP – An Expert System for Automatic Map Name Placement. In: Proc. 1st Int Symp on Spatial Data Handling, pp 544–569.Google Scholar
  21. 21.
    García R, de Castro JP, Verdú E, Verdú MJ, Regueras LM (2012) Web Map Tile Services for Spatial Data Infrastructures: Management and Optimization. In: Bateira C (ed.) Cartography - A Tool for Spatial Analysis, pp 25–48. doi: 10.5772/46129
  22. 22.
    Gervautz M, Purgathofer W (1988) A Simple Method for Color Quantization: Octree Quantization. In: Magnenat-Thalmann N, Thalmann D (ed) New Trends in Comput Graphics, pp 219–231. doi: 10.1007/978-3-642-83492-9_20
  23. 23.
    Goodchild MF (2007) Citizens as sensors: the world of volunteered geography. GeoJournal 69(4):211–221. doi: 10.1002/9780470979587.ch48 CrossRefGoogle Scholar
  24. 24.
    Götzelmann T, Ali K, Hartmann K, Strothotte T (2005) Form Follows Function: Aesthetic Interactive Labels. In: Comput Aesthetics 2005. EG WS on Computational Aesthetics in Graphics, Visualization and Imaging, pp 193–200. doi:10.2312/COMPAESTH/COMPAESTH05/193-200Google Scholar
  25. 25.
    Haklay M, Weber P (2008) Openstreetmap – user generated street map. IEEE Pervasive Comput 7(4):12–18. doi: 10.1109/MPRV.2008.80 CrossRefGoogle Scholar
  26. 26.
    Haralick M, Shapiro LG (1985) Image segmentation techniques. Comput Vision Graph Image Process 29:100–132. doi: 10.1016/S0734-189X(85)90153-7 CrossRefGoogle Scholar
  27. 27.
    Harrie L, Stigmar H, Koivula T, Lehto L (2004) An algorithm for icon placement on a real-time map. In: Fisher P (ed) Developments in spatial data handling. Springer, Berlin, pp 493–507. doi: 10.1007/3-540-26772-7_38 Google Scholar
  28. 28.
    Harrie L, Stigmar H (2010) Evaluation of measures for quantifying map information. ISPRS J Photogramm Remote Sens 65(3):266–274. doi: 10.1016/j.isprsjprs.2009.05.004 CrossRefGoogle Scholar
  29. 29.
    Hirsch SA (1982) An algorithm for automatic name placement around point data. Am Cartographer 9(1):5–17. doi: 10.1559/152304082783948367 CrossRefGoogle Scholar
  30. 30.
    Hong F, Zuxun Z, Daosheng D (2005) Quality evaluation model for map labeling. Geo Spat Inf Sci 8(1):72–78. doi: 10.1007/BF02826996 CrossRefGoogle Scholar
  31. 31.
    Imhof E (1975) Positioning names on maps. Am Cartographer 2(2):128–144. doi: 10.1559/152304075784313304 CrossRefGoogle Scholar
  32. 32.
    Imhof E (1982) Cartographic relief presentation. Walter de Gruyter, BerlinGoogle Scholar
  33. 33.
    Imhof E (2007) Cartographic relief presentation (reprint). ESRI Press, RedmondGoogle Scholar
  34. 34.
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: review. J ACM Comput Surv 31(3):264–323. doi: 10.1145/331499.331504 CrossRefGoogle Scholar
  35. 35.
    Jenny B, Hurni L (2006) Swiss-style colour relief shading modulated by elevation and by exposure to illumination. Cartogr J 43:198–207. doi: 10.1179/000870406X158164 CrossRefGoogle Scholar
  36. 36.
    Jenny B, Patterson T (2007) Introducing plan oblique relief. Cartogr Perspect 57:21–40CrossRefGoogle Scholar
  37. 37.
    Jones C (1989) Cartographic name placement with prolog. IEEE Comput Graph Appl 9(5):36–47. doi: 10.1109/38.35536 CrossRefGoogle Scholar
  38. 38.
    Jurio A, Bustince H, Pagola M, Couto P, Pedrycz W (2013) New measures of homogeneity for image processing: an application to fingerprint segmentation. Soft Comput Springer, Berlin. doi: 10.1007/s00500-013-1126-3 Google Scholar
  39. 39.
    Kakoulis KG, Tollis IG (2003) A unified approach to automatic label placement. Int J of Comput Geom Appl 13(1):23–59. doi: 10.1142/S0218195903001062 CrossRefGoogle Scholar
  40. 40.
    Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. doi: 10.1126/science.220.4598.671 CrossRefGoogle Scholar
  41. 41.
    Kovanen J, Sarjakoski LT (2013) Sequential displacement and grouping of point symbols in a mobile context. J Locat Based Serv 7(2):79–97. doi: 10.1080/17489725.2013.764024 CrossRefGoogle Scholar
  42. 42.
    Lee S, Sips M, Seidel H-P (2013) Perceptually driven visibility optimization for categorical data visualization. In: IEEE Trans Vis Comput Graph 19(10):1746–1757. doi: 10.1109/TVCG.2012.315 Google Scholar
  43. 43.
    Lehmann C, Döllner J (2012) Silhouette-based label placement in interactive 3D maps. In: Buchroithner M, Prechtel N, Burghardt D (eds) Cartography from Pole to Pole. Lecture Notes in Geoinformation and, Cartography, pp 177–186Google Scholar
  44. 44.
    Leyk S, Boesch R (2010) Colors of the past: color image segmentation in historical topographic maps based on homogeneity. GeoInformatica 14(1):1–21. doi: 10.1007/s10707-008-0074-z CrossRefGoogle Scholar
  45. 45.
    Li Z, Huang P (2002) Quantitative measures for spatial information of maps. Int J Geogr Inf Sci 16(7):699–709. doi: 10.1080/13658810210149416 CrossRefGoogle Scholar
  46. 46.
    Lloyd R (1997) Visual search processes used in map reading. Cartographica 34(1):11–32. doi: 10.3138/F342-1217-827R-0777 CrossRefGoogle Scholar
  47. 47.
    Mote K (2007) Fast point-feature label placement for dynamic visualizations. Inf Vis 6(4):249–260. doi: 10.1057/palgrave.ivs.9500163 CrossRefGoogle Scholar
  48. 48.
    Noyes L (1980) The positioning of type on maps: the effect of surrounding material on word recognition time. Hum Factors: J Hum Factors Ergon Soc 22(3):353–360. doi: 10.1177/001872088002200309 Google Scholar
  49. 49.
    Open Geospatial Consortium (2006) OpenGIS Web Map Server Implementation Specification. Tech. Rep. OGC 06–042, In: de la Beaujardiere J (eds.), Open Geospatial Consortium. Available at
  50. 50.
    Open Geospatial Consortium (2010) OpenGIS Web Map Tile Service Implementation Standard. Tech. Rep. OGC 07-057r7, In: Masó J, Pomakis K, Julià N (eds.), Open Geospatial Consortium. Available at
  51. 51.
    OpenStreetMap, (2013). (a collaborative project for creating a free editable geo-database of the world. Data © OpenStreetMap contributors; accessed on November 12, 2013). Available at
  52. 52.
    Pal SK, Pal NR (1987) Segmentation using contrast and homogeneity measures. Pattern Recogn Lett 5(4):293–304. doi: 10.1016/0167-8655(87)90061-4 CrossRefGoogle Scholar
  53. 53.
    Pal NR, Pal SK (1993) A review on image segmentation techniques. Pattern Recognit 29:1277–1294. doi: 10.1016/0031-3203(93)90135-J.
  54. 54.
    Phillips RJ, Noyes L, Audley RJ (1977) The legibility of type on maps. Ergonomics 20(6):671–682CrossRefGoogle Scholar
  55. 55.
    Phillips RJ, Noyes L (1982) An investigation of visual clutter in the topographic base of a geological map. Cartogr J 19(2):122–132. doi: 10.1179/000870482787073225 CrossRefGoogle Scholar
  56. 56.
    Purves D, Lotto RB (2010) Why we see what we do redux: a wholly empirical theory of vision, 2nd edn. Sinauer Associates, IncGoogle Scholar
  57. 57.
    Ramm F, Topf J, Chilton S (2010) openstreetmap: using and enhancing the free map of the world. UIT, CambridgeGoogle Scholar
  58. 58.
    Reimer A (2011) Squaring the Circle? Bivariate Colour maps and Jacques Bertin's concept of 'Disassociation' (Digital Proceedings), Int Cartographic Conference ICC 2011, Paris.Google Scholar
  59. 59.
    Robinson AH, Morrison JL, Muehrcke PC, Kimerling AJ, Guptil SC (1995) Elements of cartography, 6th edn. Wiley, New YorkGoogle Scholar
  60. 60.
    Rylov MA, Reimer AW (2014) A comprehensive multi-criteria model for high cartographic quality point-feature label placement. Cartographica 49(1):52–68. doi: 10.3138/carto.49.1.2137 CrossRefGoogle Scholar
  61. 61.
    Rylov MA, Reimer AW (2014) A Practical Algorithm for the External Annotation of Area Features. Cartogr J 51(3). doi: 10.1179/1743277414Y.0000000091
  62. 62.
    Schreyer M, Raidl GR (2002) Letting ants labeling point features. in: proc. IEEE Congr Evol Comput (CEC ′02) 2:1564–1569Google Scholar
  63. 63.
    Schrijver S (2003) Combinatorial optimization: polyhedra and efficiency. Springer, BerlinGoogle Scholar
  64. 64.
    Shannon CE, Weaver W (1964) The mathematical theory of communication, the university of illinois press. Champaign, ILGoogle Scholar
  65. 65.
    Shapiro LG, Stockman GC (2001) Image segmentation. Computer Vision, pp. 279–325, New Jersey, Prentice-Hall.Google Scholar
  66. 66.
    Stadler G, Steiner T, Beiglbock J (2006) A practical map labeling algorithm utilizing morphological image processing and force-directed methods. Cartogr Geogr Inf Sci 33(3):207–215. doi: 10.1559/152304006779077327 CrossRefGoogle Scholar
  67. 67.
    Strijk TW, van Kreveld MJ (2002) Practical extensions of point labeling in the slider model. GeoInformatica 6(2):181–197. doi: 10.1023/A:1015202410664 CrossRefGoogle Scholar
  68. 68.
    Sukhov VI (1967) Information capacity of a map entropy. Geodesy Aerophotography 10:212–215Google Scholar
  69. 69.
    Sukhov VI (1970) Application of information theory in generalization of map contents. Int Yearb Cartogr, X: 41–47Google Scholar
  70. 70.
    van Dijk S, van Kreveld MJ, Strijk TW, Wolff A (2002) Towards an evaluation of quality for names placement methods. Int J of Geogr Inf Sci 16(7):641–661. doi: 10.1080/13658810210138742 CrossRefGoogle Scholar
  71. 71.
    van Kreveld MJ, Strijk TW, Wolff A (1999) Point labeling with sliding labels. Comput Geom: Theory Appl 13:21–47. doi: 10.1016/S0925-7721(99)00005-X CrossRefGoogle Scholar
  72. 72.
    van Roessel W (1989) An algorithm for locating candidate labeling boxes within a polygon. Am Cartographer 16(3):201–209. doi: 10.1559/152304089783814034 CrossRefGoogle Scholar
  73. 73.
    Verner OV, Wainwright RL, Schoenefeld D (1997) Placing text labels on maps and diagrams using genetic algorithms with masking. INFORMS J Comput 9(3):266–275. doi: 10.1287/ijoc.9.3.266 CrossRefGoogle Scholar
  74. 74.
    Williams LG (1967) The effects of target specification on objects fixated during visual search. Acta Psychol 27:355–360. doi: 10.3758/BF03207398 CrossRefGoogle Scholar
  75. 75.
    Wojtach WT (2009) Reconsidering perceptual content. Philos Sci 76(1):22–43CrossRefGoogle Scholar
  76. 76.
    Wolff A, Knipping L, van Kreveld M, Strijk T, Agarwal PK (2001) A Simple and Efficient Algorithm for High-Quality Line Labeling. Technical Report UU-CS-2001-44, Department of Computer Science, Utrecht University.Google Scholar
  77. 77.
    Wolff A, Strijk T (2009) A map labeling bibliography. Available at
  78. 78.
    Wood CH (1994) Effects of brightness difference on specific map-analysis tasks: an empirical analysis. Cartog Geogr Inf Sci 21(1):15–30. doi: 10.1559/152304094782564019 CrossRefGoogle Scholar
  79. 79.
    Wood CH (2000) Descriptive and illustrated guide for type placement on small scale maps. Cartogr J 37(1):5–18. doi: 10.1179/000870400787320851 CrossRefGoogle Scholar
  80. 80.
    Yamamoto M, Camara G, Lorena LAN (2002) Tabu search heuristic for point-feature cartographic label placement. Geophys J R Astron Soc 6(1):77–90. doi: 10.1023/A:1013720231747 Google Scholar
  81. 81.
    Yoeli P (1972) The logic of automated map lettering. Cartogr J 9(2):99–108. doi: 10.1179/000870472787352505 CrossRefGoogle Scholar
  82. 82.
    Zhang Q, Harrie L (2006) Real-time map labelling for mobile applications. Comput Environ Urban Syst 30(6):773–783. doi: 10.1016/j.compenvurbsys.2006.02.004 CrossRefGoogle Scholar
  83. 83.
    Zhang Q, Harrie L (2006) Placing text and icon labels simultaneously: a real-time method. Cartogr Geogr Inf Sci 33(1):53–64. doi: 10.1559/152304006777323127 CrossRefGoogle Scholar
  84. 84.
    Zoraster S (1986) Integer programming applied to the map label placement problem. Cartographica 23(3):16–27. doi: 10.3138/9258-63QL-3988-110H CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.GIScience Research Group, Institute of GeographyHeidelberg UniversityHeidelbergGermany

Personalised recommendations