Advertisement

GeoInformatica

, Volume 19, Issue 1, pp 85–115 | Cite as

Stacked space-time densities: a geovisualisation approach to explore dynamics of space use over time

  • Urška Demšar
  • Kevin Buchin
  • E. Emiel van Loon
  • Judy Shamoun-Baranes
Article

Abstract

Recent developments and ubiquitous use of global positioning devices have revolutionised movement ecology. Scientists are able to collect increasingly larger movement datasets at increasingly smaller spatial and temporal resolutions. These data consist of trajectories in space and time, represented as time series of measured locations for each tagged animal. Such data are analysed and visualised using methods for estimation of home range or utilisation distribution, which are often based on 2D kernel density in geographic space. These methods have been developed for much sparser and smaller datasets obtained through very high frequency (VHF) radio telemetry. They focus on the spatial distribution of measurement locations and ignore time and sequentiality of measurements. We present an alternative geovisualisation method for spatio-temporal aggregation of trajectories of tagged animals: stacked space-time densities. The method was developed to visually portray temporal changes in animal use of space using a volumetric display in a space-time cube. We describe the algorithm for calculation of stacked densities using four different decay functions, normally used in space use studies: linear decay, bisquare decay, Gaussian decay and Brownian decay. We present a case study, where we visualise trajectories of lesser black backed gulls, collected over 30 days. We demonstrate how the method can be used to evaluate temporal site fidelity of each bird through identification of two different temporal movement patterns in the stacked density volume: spatio-temporal hot spots and spatial-only hot spots.

Keywords

Animal movement Space-time density Space-time cube Visual data exploration Home range estimation Utilisation distribution 

Notes

Acknowledgments

Research presented in this paper is part of the collaboration under the COST (European Cooperation in Science and Technology) ICT Action IC0903, “Knowledge Discovery from Moving Objects (MOVE)” and facilitated by the Lorentz Center workshop on “Analysis and visualization of moving objects” (http://www.lorentzcenter.nl/lc/web/2011/453/info.php3?wsid=453). We thank Kees Camphuysen (NIOZ) and Arnold Gronert for all the field work and sharing expert knowledge related to the Lesser black backed gull project. The tracking infrastructure is facilitated by the BiG Grid infrastructure for eScience (www.biggrid.nl). The authors would like to thank Dr Jed Long and Dr Iain Dillingham from the Centre for Geoinformatics, University of St Andrews, for useful discussions in preparation of revisions of this paper.

References

  1. 1.
    Andrienko G, Andrienko N (2010) A general framework for using aggregation in visual exploration of movement data. Cartogr J 47(1):22–40CrossRefGoogle Scholar
  2. 2.
    Benhamou S (2011) Dynamic approach to space and habitat use based on biased random bridges. PLoS ONE 6(1):e14592CrossRefGoogle Scholar
  3. 3.
    Benhamou S, Cornélis D (2010) Incorporating movement behavior and barriers to improve kernel home range space use estimates. J Wildl Manag 74(6):1353–1360CrossRefGoogle Scholar
  4. 4.
    Benhamou S, Riotte-Lambert L (2012) Beyond the utilization distribution: identifying home range areas that are intensively exploited or repeatedly visited. Ecol Model 227(2012):112–116CrossRefGoogle Scholar
  5. 5.
    Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson T (2006) Effects of sampling regime on the mean and variance of home range estimates. J Anim Ecol 75:1393–1405CrossRefGoogle Scholar
  6. 6.
    Bouten W, Baaij E, Shamoun-Baranes J, Camphuysen KJ (2013) A flexible GPS tracking system for studying bird behaviour at multiple scales. J Ornithol 154:571–580CrossRefGoogle Scholar
  7. 7.
    Bridge ES, Thorup K, Bowlin MS, Chilson PB, Diehl RH, Flacron RW, Hartl P, Roland K, Kelly JF, Robinson WD, Wikelski M (2011) Technology on the move: recent and forthcoming innovations for tracking migratory birds. Bioscience 61:689–698CrossRefGoogle Scholar
  8. 8.
    Brillinger DR, Preisler HK, Ager AA, Kie JG (2004) An exploratory data analysis (EDA) of the paths of moving animals. J Stat Plan Infer 122:43–63CrossRefGoogle Scholar
  9. 9.
    Brito JC (2003) Seasonal variation in movements, home range, and habitat use by male vipera latastei in Northern Portugal. J Herpetol 37(1):155–160CrossRefGoogle Scholar
  10. 10.
    Bullard F (1999) Estimating the home range of an animal: a Brownian bridge approach. MSc thesis. University of North Carolina at Chapel HillGoogle Scholar
  11. 11.
    Callahan SP, Callahan JH, Scheidegger CE, Silva TC (2008) Direct volume rendering. Comput Sci Eng 2008(1):88–92CrossRefGoogle Scholar
  12. 12.
    Camphuysen K (2013) A historical ecology of two closely related gull species (Laridae): multiple adaptations to a man-made environment. PhD thesis, University of Groningen, The NetherlandsGoogle Scholar
  13. 13.
    Demšar U, Virrantaus K (2010) Space-time density of trajectories: exploring spatiotemporal patterns in movement data. Int J Geogr Inf Sci 24(10):1527–1542CrossRefGoogle Scholar
  14. 14.
    Downs JA, Horner MW (2009) A characteristic-hull based method for home range estimation. Trans GIS 13(5–6):527–537CrossRefGoogle Scholar
  15. 15.
    Downs JA (2010) Time-geographic density estimation for moving point objects. In: Fabrikant SI et al. (eds) Proceedings of GIScience 2010. Lecture Notes in Computer Science, 6292. 16–26Google Scholar
  16. 16.
    Downs JA, Horner MW, Tucker AD (2011) Time-geographic density estimation for home range analysis. Ann GIS 17(3):163–171CrossRefGoogle Scholar
  17. 17.
    Downs JA, Horner MW (2012) Analysing infrequently sampled animal tracking data by incorporating generalized movement trajectories with kernel density estimation. Comput Environ Urban Syst 36:302–310CrossRefGoogle Scholar
  18. 18.
    Fieberg J (2007) Kernel density estimators of home range: smoothing and the autocorrelation red herring. Ecology 88(4):1059–1066CrossRefGoogle Scholar
  19. 19.
    Getz WM, Wilmers CC (2004) A local nearest-neighbour convex-hull construction of home ranges and utilization distributions. Ecography 27:489–505CrossRefGoogle Scholar
  20. 20.
    Getz WM, Fortmann-Roe S, Cross PC, Lyons AJ, Ryan SJ, Wilmers CC (2007) LoCoH: nonparametric kernel methods for constructing home ranges and utilization distributions. PLoS ONE 2:e207CrossRefGoogle Scholar
  21. 21.
    Ghisla A (2009) Limitation and applicability of methods for home range estimation in respect to auto-ecological factors and data quality. MSc thesis (in Italian). Insubria University, Varese, ItalyGoogle Scholar
  22. 22.
    Hadwiger M, Sigg C, Scharsach H, Bühler K, Gross M (2005) Real-time ray-casting and advanced shading of discrete isosurfaces. Eurographics 24(3)Google Scholar
  23. 23.
    Hägerstrand T (1970) What about people in regional science? Pap Reg Sci Assoc 24:7–21CrossRefGoogle Scholar
  24. 24.
    Hengl T, van Loon EE, Shamoun-Baranes J, Bouten W (2008) Geostatistical analysis of GPS trajectory data: space-time densities. Proceedings of the 8th International Symposium on Spatial Accuracy Assessment in natural Resources and Environmental Sciences, 17-24. Shanghai, June 2008Google Scholar
  25. 25.
    Holden C (2006) Inching toward movement ecology. Science 313:779–782CrossRefGoogle Scholar
  26. 26.
    Horne JS, Garton EO, Krone SM, Lewis JS (2007) Analyzing animal movements using Brownian bridges. Ecology 88(9):2354–2363CrossRefGoogle Scholar
  27. 27.
    Horne JS, Garton EO, Krone SM, Lewis JS (2007b) Analyzing animal movements using Brownian bridges - appendix A: derivation of Brownian bridge probability distribution. Ecol Arch E088-142-A1Google Scholar
  28. 28.
    Horne JS, Garton EO, Sager-Fradkin KA (2007) Correcting home-range models for observation bias. J Wildl Manag 71(3):996–1001CrossRefGoogle Scholar
  29. 29.
    Isenberg T, Isenberg P, Chen J, Sedlmair M, Möller T (2013) A Systematic review on the practice of evaluating visualization. IEEE Trans Vis Comput Graph 19(12):2818–2827CrossRefGoogle Scholar
  30. 30.
    Kie JG, Matthiopoulos J, Fieberg J, Powell RA, Cagnacci F, Mitchell MS, Gaillard J-M, Moorcroft PR (2010) The home-range concept: are traditional estimators still relevant with modern telemetry technology? Phil Trans R Soc Lond Ser B Biol Sci 365:2221–2231CrossRefGoogle Scholar
  31. 31.
    Kraak M-J (2008) Geovisualization and time – new opportunities for the space-time cube. In: Dodge M, McDerby M, Turner M (eds) Geographic visualization: concepts, tools and applications. Wiley, Chichester, pp 293–306CrossRefGoogle Scholar
  32. 32.
    Kranstauber B, Kays R, LaPoint SD, Wikelski M, Safi K (2012) A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement. J Anim Ecol 81:738–746CrossRefGoogle Scholar
  33. 33.
    Krisp JM, Peters S, Burkert F (2013) Visualizing crowd movement patterns using a directed kernel density estimation. Earth Observation of Global Changes (EOGC), Lecture Notes in Geoinformation and Cartography 255–268Google Scholar
  34. 34.
    Laver PN, Kelly MJ (2008) A critical review of home range studies. J Wildl Manag 72(1):290–298CrossRefGoogle Scholar
  35. 35.
    Long JA, Nelson TA (2011) Time Geography and Wildlife Home Range Delineation. J Wildl Manag 76(2):407–413CrossRefGoogle Scholar
  36. 36.
    Long JA, Nelson TA (2013) A review of quantitative methods for movement data. Int J Geogr Inf Sci 27(2):292–318Google Scholar
  37. 37.
    Manly BF, McDonald L, Thomas DL, McDonald TL, Erickson WP (2002) Resource selection by animals: statistical design and analysis for field studies 2nd ed. Kluwer Academic PublishersGoogle Scholar
  38. 38.
    Minnotte MC, Sain SR, Scott DW (2008) Multivariate visualization by density estimation. In: Chen C, Härdle W, Unwin A (eds) Handbook of data visualization. Springer handbooks of computational statistics. Springer Verlag, Berlin-Heidelberg, pp 390–413Google Scholar
  39. 39.
    Nakaya T, Yano K (2010) Visualising crime clusters in a space-time cube: and exploratory data-analysis approach using space-time kernel density estimation and scan statistics. Trans GIS 14(3):223–239CrossRefGoogle Scholar
  40. 40.
    Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 154–177Google Scholar
  41. 41.
    Otis DL, White GC (1999) Autocorrelation of location estimates and the analysis of radiotracking data. J Wildl Manag 63(3):1039–1044CrossRefGoogle Scholar
  42. 42.
    Riotte-Lambert L, Benhamou S, Chamaillé-Jammes S (2013) Periodicity analysis of movement recursions. J Theor Biol 317(2013):238–243CrossRefGoogle Scholar
  43. 43.
    Ropert-Coudert Y, Beaulieu M, Hanuise N, Kato A (2009) Diving into the world of biologging. Endanger Species Res 10:21–27CrossRefGoogle Scholar
  44. 44.
    Rosenberg DK, McKelvey KS (1999) Estimation of habitat selection for central-place foraging animals. J Wildl Manag 63(3):1028–1038CrossRefGoogle Scholar
  45. 45.
    Seaman DE, Powell RA (1996) An evaluation of the accuracy of kernel density estimators for home range analysis. Ecology 77(7):2075–2085CrossRefGoogle Scholar
  46. 46.
    Shamoun-Baranes J, van Loon E, van Gasteren H, van Belle J, Bouten W, Buurma L (2006) A comparative analysis of the influence of weather on the flight altitudes of birds. Bull Am Meteorol Soc 87:47–61CrossRefGoogle Scholar
  47. 47.
    Shamoun-Baranes J, van Loon EE, Purves RS, Speckmann B, Weiskopf D, Camphuysen CJ (2012) Analysis and visualization of animal movement. Biol Lett 8(1):6–9CrossRefGoogle Scholar
  48. 48.
    Shamoun-Baranes J, Bom R, van Loon EE, Ens BJ, Oosterbeek K, Bouten W (2012) From sensor data to animal behaviour: an oystercatcher example. PLoS ONE 7:e37997CrossRefGoogle Scholar
  49. 49.
    Scheepens R, Willems N, van de Wetering H, van Wijk JJ (2011) Interactive visualization of multivariate trajectory data with density maps. IEEE Pac Visualisation Symp 2001:147–154Google Scholar
  50. 50.
    Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New YorkCrossRefGoogle Scholar
  51. 51.
    Stephens DW, Brown JS, Ydenberg RC (2007) Foraging: behaviour and ecology. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  52. 52.
    Van Deelen TR, Campa H III, Hamady M, Haufler JB (1998) Migration and seasonal range dynamics of deer using adjacent deeryards in northern Michigan. J Wildl Manag 62(1):205–213CrossRefGoogle Scholar
  53. 53.
    Walter DW, Beringer J, Hansen LP, Fischer JW, Millspaugh JJ, Vercauteren KC (2011) Factors affecting space use overlap by white-tailed deer in an urban landscape. Int J Geogr Inf Sci 25(3):379–392CrossRefGoogle Scholar
  54. 54.
    Wand MP, Jones MC (1993) Comparison of smoothing parametrizations in bivariate kernel density estimation. J Am Stat Assoc 88(422):520–528CrossRefGoogle Scholar
  55. 55.
    Worton BJ (1987) A review of models of home range for animal movement. Ecol Model 38:277–298CrossRefGoogle Scholar
  56. 56.
    Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70(1):164–168CrossRefGoogle Scholar
  57. 57.
    Wu Y, Qu H, Chung K-K, Chan M-Y, Zhou H (2010) Quantitative effectiveness measures for direct volume rendered images. IEEE Pac Visualisation Symp 2010:1–8Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Urška Demšar
    • 1
  • Kevin Buchin
    • 2
  • E. Emiel van Loon
    • 3
  • Judy Shamoun-Baranes
    • 3
  1. 1.Centre for GeoInformatics, School of Geography & GeosciencesUniversity of St AndrewsSt Andrews, FifeUK
  2. 2.Department of Mathematics and Computer ScienceTechnical University EindhovenEindhovenThe Netherlands
  3. 3.Computational Geo-Ecology, Institute of Biodiversity and Ecosystem Dynamics (IBED)University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations