, Volume 17, Issue 4, pp 567–597 | Cite as

Opportunistic sampling-based query processing in wireless sensor networks



High resolution sampling of physical phenomenon is a prime application of large scale wireless sensor networks (WSNs). With hundreds of nodes deployed over vast tracts of land, monitoring data can now be generated at unprecedented spatio-temporal scales. However, the limited battery life of individual nodes in the network mandates smart ways of collecting this data by maximizing localized processing of information at the node level. In this paper, we propose a WSN query processing method that enhances localized information processing by harnessing the two inherent aspects of WSN communication, i.e., multihop and multipath data transmission. In an active WSN where data collection queries are regularly processed, multihop and multipath routing leads to a situation where a significant proportion of nodes relay and overhear data generated by other nodes in the network. We propose that nodes opportunistically sample this data as they communicate. We model the data communication process in a WSN and show that opportunistic sampling during data communication leads to surprisingly accurate global knowledge at each node. We present an opportunistic query processing system that uses the accumulated global knowledge to limit the data collection requirements for future queries while ensuring temporal freshness of the results.


Wireless sensor networks Query processing Spatio-temporal modeling 


  1. 1.
    Bourke P (2012) Area of multiple intersecting circles. Accessed Sept 2012
  2. 2.
    Chu D, Deshpande A, Hellerstein JM, Hong W (2006) Approximate data collection in sensor networks using probabilistic models. In: Proceedings of ICDE, p 48Google Scholar
  3. 3.
    Clark I, Harper WV (2000) Practical geostatistics 2000. Ecosse North America, WaterloovilleGoogle Scholar
  4. 4.
    Considine J, Li F, Kollios G, Byers J (2004) Approximate aggregation techniques for sensor databases. In: Proceedings of ICDE, pp 449–460Google Scholar
  5. 5.
    Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. MIT Press, CambridgeGoogle Scholar
  6. 6.
    Cressie N, Huang HC (1999) Classes of nonseparable, spatio-temporal stationary covariance functions. J Am Stat Assoc 94(448):1330–1340CrossRefGoogle Scholar
  7. 7.
    Cressie NA (1993) Statistics for spatial data. Wiley, New YorkGoogle Scholar
  8. 8.
    Crossbow Technologies (2009) Accessed Sept 2012
  9. 9.
    Fewell MP (2006) Area of common overlap of three circles. Technical Note DSTO-TN-0722, Defence Science and Technology Organization, Australia. Accessed Sept 2012
  10. 10.
    Gandhi S, Suri S, Welzl E (2010) Catching elephants with mice: Sparse sampling for monitoring sensor networks. ACM Trans Sen Netw 1(6):1–27Google Scholar
  11. 11.
    Ganesan D, Greenstein B, Estrin D, Heidemann J, Govindan R (2005) Multiresolution storage and search in sensor networks. ACM Trans Storage 1(3):277–315CrossRefGoogle Scholar
  12. 12.
    Gao J, Guibas LJ, Hershberger J, Zhang L (2004) Fractionally cascaded information in a sensor network. In: Proceedings of IPSN, pp 311–319Google Scholar
  13. 13.
    Greenstein B, Estrin D, Govindan R, Ratnasamy S, Shenker S (2003) DIFS: a distributed index for features in sensor networks. J Ad Hoc Netw 1(2–3):333–349CrossRefGoogle Scholar
  14. 14.
    Guestrin C, Bodik P, Thibaux R, Paskin M, Madden S (2004) Distributed regression: an efficient framework for modeling sensor network data. In: Proceedings of IPSN, pp 1–10Google Scholar
  15. 15.
    Huebsch R, Garofalakis M, Hellerstein JM, Stoica I (2007) Sharing aggregate computation for distributed queries. In: Proceedings of SIGMOD, pp 485–496Google Scholar
  16. 16.
    Intanagonwiwat C, Govindan R, Estrin D, Heidemann J, Silva F (2003) Directed diffusion for wireless sensor networking. IEEE/ACM Trans Netw 11(1):2–16CrossRefGoogle Scholar
  17. 17.
    Intel Lab Data (2010) Accessed Sept 2012
  18. 18.
    Isaaks E, Srivatava RM (1989) An introduction to applied geostatistics. Oxford University Press, New YorkGoogle Scholar
  19. 19.
    Kempe D, Kleinberg J, Demers A (2001) Spatial gossip and resource location protocols. In: Proceedings of STOC, pp 163–172Google Scholar
  20. 20.
    Lund C, Yannakakis M (1994) On the hardness of approximating minimization problems. J ACM 41(5):960–981CrossRefGoogle Scholar
  21. 21.
    Ma YZ, Jones TA (2001) Teacher’s aide: Modeling hole-effect variograms of lithology-indicator variables. Math Geol 33(5):631–648CrossRefGoogle Scholar
  22. 22.
    Madden S, Franklin MJ, Hellerstein JM, Hong W (2002) TAG: a tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper Syst Rev 36(SI):131–146CrossRefGoogle Scholar
  23. 23.
    Madden S, Franklin MJ, Hellerstein JM, Hong W (2005) TinyDB: an acquisitional query processing system for sensor networks. ACM Trans Database Syst 30(1):122–173CrossRefGoogle Scholar
  24. 24.
    Manjhi A, Nath S, Gibbons PB (2005) Tributaries and deltas: efficient and robust aggregation in sensor network streams. In: Proceedings of SIGMOD, pp 287–298Google Scholar
  25. 25.
    Nath S, Gibbons PB, Seshan S, Anderson ZR (2004) Synopsis diffusion for robust aggregation in sensor networks. In: Proceedings of SenSys, pp 250–262Google Scholar
  26. 26.
    Ratnasamy S, Karp B, Shenker S, Estrin D, Govindan R, Yin L, Yu F (2003) Data-centric storage in sensornets with GHT, a geographic hash table. Mob Netw Appl 8(4):427–442CrossRefGoogle Scholar
  27. 27.
    Sarkar R, Zhu X, Gao J (2007) Hierarchical spatial gossip for multi-resolution representations in sensor networks. In: Proceedings of IPSN, pp 420–429Google Scholar
  28. 28.
    Silberstein A, Braynard R, Yang J (2006) Constraint chaining: on energy-efficient continuous monitoring in sensor networks. In: Proceedings of SIGMOD, pp 157–168Google Scholar
  29. 29.
    Umer M, Tanin E, Kulik L (2009) Opportunistic sampling in wireless sensor networks. In: Proceedings of ACM SIGSPATIAL GIS 2009, pp 492–495Google Scholar
  30. 30.
    Yao Y, Gehrke J (2002) The Cougar approach to in-network query processing in sensor networks. ACM SIGMOD Record 31(2):9–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.National ICT AustraliaAlexandriaAustralia
  2. 2.Department of Computing and Information Systems (CIS)University of MelbourneVictoriaAustralia

Personalised recommendations