, Volume 17, Issue 4, pp 521–541 | Cite as

Using virtual reality and percolation theory to visualize fluid flow in porous media

  • Carlos Magno de Lima
  • Luiz M. G. Gonçalves
  • Cristiana BentesEmail author
  • Ricardo Farias


The study of the fluid flow process through porous media can bring valuable contributions in areas like oil exploration and environmental research. In this work, we propose an interactive tool, named VRFluid, that allows visual interpretation of the three-dimensional data generated by the simulation of the fluid flow the porous media. VRFluid comprises a virtual reality engine that provides stereo visualization of the three-dimensional data, and a simulation engine based on a dynamic percolation method to model the fluid flow. VRFluid is composed of two independent main threads, the percolation simulator and the rendering server, that can operate in parallel as a pipeline. We tested our tool on a region of a mature field database, supervised by geophysicists, and obtained images of the interior of the percolation data, providing important results for the interpretation and cluster formation process.


Virtual reality Simulation and modeling Scientific visualization 


  1. 1.
    Adler J, Lev U (2003) Bootstrap percolation: visualizations and applications. Braz J Phys 33(3):641–644CrossRefGoogle Scholar
  2. 2.
    Avila R, Hong L, He T, Kaufman A, Pfister H, Silva C, Sobierajski L, Wang S (1994) Volvis: a diversified volume visualization system. In: Proc. of IEEE visualization’94, pp 31–38Google Scholar
  3. 3.
    Berkowitz B, Ewing RP (1998) Percolation theory and network modeling applications in soil physics. Surv Geophys 19:23–72CrossRefGoogle Scholar
  4. 4.
    Boyles M, Fang S (2003) 3dive: an immersive environment for interactive volume data exploration. J Comput Sci Technol 18(1):41–47CrossRefGoogle Scholar
  5. 5.
    Brady R, Pixton J, Baxter G, Moran P, Potter C, Carragher B, Belmonts A (1995) Crumbs: a virtual environment tracking tool for biological imaging. In: IEEE symposium on frontiers in biomedical visualization, pp 18–25Google Scholar
  6. 6.
    Bucha V (2001) Displaying 3-d seismic models through the vrml and gocad. SW3D 1(11):337–355Google Scholar
  7. 7.
    Chatzis I, Dullien FAL (1985) The modelling of mercury porosimetry and relative permeability of mercury in sandstones using percolation theory. Int Chem Eng 1(25):47–66Google Scholar
  8. 8.
    CMG (2005) Computer Modelling Group Ltd.
  9. 9.
    de Freitas JE (2002) Estudo de algums sistemas complexos: percolacao dependente do tempo, aplicacao a problemas de petroleo, percolacao de longo alcance e modelo de reacao e difusao. PhD thesis, Universidade Federal do Rio Grande do NorteGoogle Scholar
  10. 10.
    Dorn GA, Cole MJ, Tubman KM (1995) Visualization in 3-d seismic interpretation. Lead Edge 14(10):1045–1049CrossRefGoogle Scholar
  11. 11.
    Dorn et al (2001) Immersive 3-d visualization applied to drilling planning. Lead Edge (20):1389–1392Google Scholar
  12. 12.
    Farias R, Mitchell J, Silva C (2000) Zsweep: an efficient and exact projection algorithm for unstructured volume rendering. In: 2000 volume visualization symposium, pp 91–99Google Scholar
  13. 13.
    Ferrand LA, Celia MA (1992) The effects of heterogeneity on the drainage capillary pressure: saturation relations. Water Resour Res 3(28):859–870CrossRefGoogle Scholar
  14. 14.
    Friedman SP, Seaton NA (1998) Critical path analysis of the relation-ship between permeability and electrical conductivity of three dimensional pore networks. Water Resour Res 7(34):1703–1710CrossRefGoogle Scholar
  15. 15.
    Fuhrmann AL, Ozer B, Mroz L, Hauser H (2005) Vr2, interactive volume rendering using pc-based virtual reality.
  16. 16.
    George DS, Kovscek AR (2001) Visualization of solution gas drive in viscous oil. Technical report, Stanford University, CA, USAGoogle Scholar
  17. 17.
    Gudukbay U, Yilmaz T (2002) Stereoscopic view-dependent visualization of terrain height fields. IEEE Trans Vis Comput Graph 8(4):330–345CrossRefGoogle Scholar
  18. 18.
    CAVE5D Users Guide (1998)
  19. 19.
    Hibbard W, Santek D (1990) The Vis5D system for easy interactive visualization. In: Proc. of the 2nd IEEE visualization conference (Vis1990), pp 28–35Google Scholar
  20. 20.
    Hilpert M, Miller CT (2001) Pore-morphology-based simulation of drainage in totally water wetting porous media. Adv Water Resour 1(24):243–255CrossRefGoogle Scholar
  21. 21.
    Hodges LF (1991) Basic principles of stereographic software development. Stereoscopic and Applications II, Proc SPIE 1457 12(2):9–17CrossRefGoogle Scholar
  22. 22.
    Hodges LF (1992) Tutorial: time-multiplexed stereoscopic computer graphics. IEEE Comput Graph Appl 12(2):20–30CrossRefGoogle Scholar
  23. 23.
    Hudson R, Malagoli A (1996) Networked virtual reality for real-time 4d navigation of astrophysical turbulence data simulation. In: Multiconference of the Society for Computer SimulationGoogle Scholar
  24. 24.
    Hunt AG (2005) Percolation theory for flow in porous media. Springer, BerlinGoogle Scholar
  25. 25.
    Jerauld GR, Latter SJ (1990) The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modelling. Transp Porous Media 1(5):103–151CrossRefGoogle Scholar
  26. 26.
    King PR, Andrade JS, Buldyrev SV, Dokholyan NV, Lee Y, Havlin S, Stanley HE (1999) Predicting oil recovery using percolation. Physica A 1(266):107–114CrossRefGoogle Scholar
  27. 27.
    Lascara C, Wheless G, Cox D, Patterson R, Levy S, Johnson AE, Leigh J (1999) Teleimmersive virtual environments for collaborative knowledge discovery. In: Proceedings of advanced simulation technologies conference, pp 11–15Google Scholar
  28. 28.
    Lima CM, Gonalves LM, Bentes C, Farias R (2005) Visfluid: an analysis tool for fluid flow in porous media. In: Proceedings of the VII Brazilian symposium on GeoInformatics, pp 88–95Google Scholar
  29. 29.
    Lowry MI, Miller CT (1995) Pore-scale modeling of nonwetting-phase residual in porous media. Water Resour Res 1(31):455–473CrossRefGoogle Scholar
  30. 30.
    McPherson A, Maltrud M (1998) Poptex: interactive ocean model visualization using texture mapping hardware. In: Proc. of the 9th IEEE visualization conference (Vis1998), pp 471–474Google Scholar
  31. 31.
    Mroz L, Hauser H (2001) Rtvr—a flexible java library for interactive volume rendering. In: Proceedings IEEE visualization 2001, pp 279–286Google Scholar
  32. 32.
    OpenGL Architecture Review Board/Editor: Shreiner D (2004) OpenGL reference manual: the official reference document to OpenGL, Version 1.4, 4/E. Addison-WesleyGoogle Scholar
  33. 33.
    Or D, Tuller M (2003) Hydraulic conductivity of partially saturated fractured porous media: flow in a cross-section. Adv Water Resour 1(26):883–898CrossRefGoogle Scholar
  34. 34.
    Peggy P, Whitman S, Mendonza R, Tsiao J (1997) ParVox—a parallel splatting volume rendering system for distributed visualization. In: Painter J, Stoll G, Ma K-L (eds) IEEE parallel rendering symposium, pp 7–14Google Scholar
  35. 35.
    Pfister H, Hardenbergh J, Knittel J, Lauer H, Seiler L (1999) The volumepro real-time ray-casting system. In: SIGGRAPH’99Google Scholar
  36. 36.
    Rosslerova R, Kodes V (1996) The use of gis in percolation study of soil porous system. In: Proc. HydroGIS 96, application of geographic information systems in hydrology and water resources management, pp 259–265Google Scholar
  37. 37.
    Sagar NS, Castanier LMD (1997) Oil-foam interactions in a micromodel. Technical report, Dept. of Petroleum Engineering, Stanford University, CA, USAGoogle Scholar
  38. 38.
    Schulze JP, Wossner U, Walz SP, Lang U (2001) Volume rendering in a virtual environment. In: Proc. of 5th IPTW and Eurographics virtual environments, pp 187–198Google Scholar
  39. 39.
    Stauffer D (1979) Scaling theory of percolation clusters. Phys Rep 54(1):1–74CrossRefGoogle Scholar
  40. 40.
    Stauffer D, Aharony A (1992) Introduction to percolation theory. Taylor & Francis, LondonGoogle Scholar
  41. 41.
    Tomov S, McGuigan M, Bennett R, Smith J, Spiletic G (2005) Benchmarking and implementation of probability-based simulations on programmable graphics cards. Comput Graph 29(1):71–80CrossRefGoogle Scholar
  42. 42.
    Wilkinson D, Willemsen JF (1983) Invasion percolation: a new form of percolation theory. J Phys A 1:3365–3376CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carlos Magno de Lima
    • 1
  • Luiz M. G. Gonçalves
    • 1
  • Cristiana Bentes
    • 2
    Email author
  • Ricardo Farias
    • 3
  1. 1.Department of Computer Engineering and AutomationFederal University of Rio Grande, do NorteNatalBrazil
  2. 2.Department of Systems EngineeringState University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.COPPE-Systems EngineeringFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations