GeoInformatica

, Volume 16, Issue 1, pp 207–220 | Cite as

Integrating GI with non-GI services—showcasing interoperability in a heterogeneous service-oriented architecture

  • Martin Treiblmayr
  • Simon Scheider
  • Antonio Krüger
  • Marc von der Linden
Article

Abstract

The concept of a service-oriented architecture provides a technical foundation for delivering, using, and integrating software. It can serve as an approach to integrate GIS with other, non-GIS applications. This paper presents and discusses a service-oriented architecture that embraces a GIS and an enterprise resource planning system. The two information systems make mutually required functionalities available as services. This defines the showcase for making GI and non-GI services syntactically and semantically interoperable. The services-based integration leverages open-standard interfacing and, thus, removes syntactic heterogeneity. The integration is discussed in terms of an emergency management scenario. This scenario also helps to outline challenging semantic interoperability issues. When services provided by GIS and non-GIS applications interact, the problem arises how their different conceptualizations should be mapped. This paper analyzes essential ontological distinctions for mapping conceptual schemes in GI locator services and non-GI services. It proposes a hybrid decentralized approach of concept mapping, based on a common top-level ontology.

Keywords

Service-oriented architecture (SOA) Application integration Enterprise resource planning (ERP) system Interoperability Semantic heterogeneity 

References

  1. 1.
    Dostal W, Jeckle M, Melzer I, Zengler B (2007) Service-orientierte Architekturen mit web-services: Konzepte, standards, Praxis. Spektrum Akad. Verlag, BerlinGoogle Scholar
  2. 2.
    Organization for the Advancement of Structured Information Standards (2006) Reference model for service oriented architecture 1.0. http://www.oasis-open.org/committees/download.php/19679/soa-rm-cs.pdf. Accessed 3 May 2011
  3. 3.
    Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographic information systems and science. Wiley, ChichesterGoogle Scholar
  4. 4.
    Gronau N (2004) Enterprise resource planning und supply chain management—Architektur und Funktionen. Oldenbourg, MünchenCrossRefGoogle Scholar
  5. 5.
    Dubey A, Wagle D (2007) Delivering software as a service. The McKinsey Quarterly. http://www.mckinsey.de/downloads/publikation/mck_on_bt/2007/mobt_12_Delivering_Software_as_a_Service.pdf. Accessed 3 May 2011
  6. 6.
    Günther O, Müller R (1999) From GISystems to GIServices: spatial computing on the internet marketplace. In: Goodchild M, Egenhofer MJ, Fegeas R, Kottman C (eds) Interoperating geographic information systems. Kluwer Academic, Amsterdam, pp 427–442CrossRefGoogle Scholar
  7. 7.
    Alameh NS (2001) Scalable and extensible infrastructures for distributing interoperable geographic information services on the internet. Dissertation, Massachusetts Institute of TechnologyGoogle Scholar
  8. 8.
    Tsou M-H, Buttenfield BP (2002) A dynamic architecture for distributing geographic information services. Trans GIS 6(4):355–381CrossRefGoogle Scholar
  9. 9.
    Friis-Christensen A, Ostländer N, Lutz M, Bernard L (2007) Designing service architectures for distributed geoprocessing: challenges and future directions. Trans GIS 11(6):799–818CrossRefGoogle Scholar
  10. 10.
    Lemmens R, de By R, Gould M, Wytzisk A, Granell C, van Oosterom P (2007) Enhancing geo-service chaining through deep service descriptions. Trans GIS 11(6):849–871CrossRefGoogle Scholar
  11. 11.
    Bernard L, Craglia M (2005) SDI—from spatial data infrastructure to service driven infrastructure. Position paper. Workshop: cross-learning on spatial data infrastructures and information infrastructures. Enschede, Netherlands. http://www.ec-gis.org/sdi/ws/crosslearning/papers/PP%20Lars%20Bernard%20-%20Max%20Craglia.pdf. Accessed 3 May 2011
  12. 12.
    Bishr Y (1998) Overcoming the semantic and other barriers to GIS interoperability. Int J Geogr Inf Sci 12(4):299–314CrossRefGoogle Scholar
  13. 13.
    Kuhn W (2005) Geospatial semantics: why, of what and how? In: Spaccapietra S, Zimányi E (eds) Journal on data semantics III. Lecture notes in computer science 3534. Springer, Heidelberg, pp 1–24Google Scholar
  14. 14.
    Gone M, Schade S (2008) Towards semantic composition of geospatial web services—using WSMO in comparison to BPEL. Int J Spatial Data Infrastructures Res 3:192–214Google Scholar
  15. 15.
    Lutz M (2007) Ontology-based descriptions for semantic discovery and composition of geoprocessing services. GeoInformatica 11(1):1–36CrossRefGoogle Scholar
  16. 16.
    Wache H, Vögele T, Visser U, Stuckenschmidt H, Schuster G, Neumann H, Hübner S (2001) Ontology-based integration of information—a survey of existing approaches. In: Gómez-Pérez A, Gruninger M, Stuckenschmidt H, Uschold M (eds) Workshop: ontologies and information sharing (in conjunction with the international joint conferences on artificial intelligence). Morgan Kaufmann, San Francisco, pp 108–117Google Scholar
  17. 17.
    Kuhn W (2003) Semantic reference systems. Int J Geogr Inf Sci 17(5):405–409CrossRefGoogle Scholar
  18. 18.
    Gangemi A, Guarino N, Masolo C, Oltramari A (2001) Understanding top-level ontological distinctions. In: Gómez-Pérez A, Gruninger M, Stuckenschmidt H, Uschold M (eds) Workshop: ontologies and information sharing (in conjunction with the international joint conferences on artificial intelligence). Morgan Kaufmann, San Francisco, pp 26–33Google Scholar
  19. 19.
    Alonso G, Casati F, Kuno H, Machiraju V (2004) Web services: concepts, architectures and applications. Springer, HeidelbergGoogle Scholar
  20. 20.
    Liu D, Deters R (2008) Management of service-oriented systems. Service-Oriented Comput Appl 2(2–3):51–64CrossRefGoogle Scholar
  21. 21.
    Organization for the Advancement of Structured Information Standards (2001) UDDI executive white paper. http://www.uddi.org/pubs/UDDI_Executive_White_Paper.pdf. Accessed 3 May 2011
  22. 22.
    Worboys M, Duckham M (2004) GIS: a computing perspective. CRC, Boca RatonGoogle Scholar
  23. 23.
    Egenhofer M (1993) What’s special about spatial—database requirements for vehicle navigation in geographic space. In: Buneman P, Jajodia S (eds) Proceedings of the international conference on management of data, SIGMOD 22(2), pp 398–402Google Scholar
  24. 24.
    Open Geospatial Consortium (2007) OpenGIS web processing service. Available at: http://portal.opengeospatial.org/files/?artifact_id=24151. Accessed 3 May 2011
  25. 25.
    Goodchild MF (2003) Geospatial data in emergencies. In: Cutter SL, Richardson DB, Wilbanks T (eds) Geographical dimensions of terrorism. Routledge, New York, pp 99–104Google Scholar
  26. 26.
    Radke J, Cova T, Sheridan MF, Troy A, Mu L, Johnson R (2000) Application challenges for geographic information science: implications for research, education, and policy for emergency preparedness and response. URISA J 12(2):15–30Google Scholar
  27. 27.
    Scheider S (2009) The case for grounding databases. In: Janowicz K, Raubal M, Levashkin S (eds) Proceedings of the international conference on geospatial semantics. Springer, Heidelberg, pp 44–62CrossRefGoogle Scholar
  28. 28.
    Vetere G, Lenzerini M (2005) Models for semantic interoperability in service-oriented architectures. IBM Syst J 44(4):887–903CrossRefGoogle Scholar
  29. 29.
    Kuhn W (2009) Semantic engineering. In: Navratil G (ed) Research trends in geographic information science. Springer, Heidelberg, pp 63–76CrossRefGoogle Scholar
  30. 30.
    Scheider S, Probst F, Janowicz K (2010) Constructing bodies and their qualities from observations. In: Galton A, Mizoguchi R (eds) Proceedings of the international conference on formal ontology in information systems. Ios Press, Amsterdam, pp 69–87Google Scholar
  31. 31.
    Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A (2003) Wonderweb deliverable d18. http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf. Accessed 4 May 2011
  32. 32.
    Scheider S, Janowicz K, Kuhn W (2009) Grounding geographic categories in the meaningful environment. In: Stewart Hornsby K, Claramunt C, Denis M, Ligozat G (eds) Proceedings of the conference on spatial information theory. Lecture notes in computer science 5756. Springer, Heidelberg, pp 69–87Google Scholar
  33. 33.
    Gibson JJ (1986) The ecological approach to visual perception. LEA, HillsdaleGoogle Scholar
  34. 34.
    Jordan T, Raubal M, Gartrell B, Egenhofer MJ (1998) An affordance-based model of place in GIS. In: Poiker TK, Chrisman N (eds) Proceedings of the international symposium on spatial data handling. International Geographical Union, Brussels, pp 98–109Google Scholar
  35. 35.
    Kuhn W (2007) An image-schematic account of spatial categories. In: Winter S, Duckham M, Kulik L, Kuipers B (eds) Proceedings of the international conference on spatial information theory. Lecture notes in computer science 4736. Springer, Heidelberg, pp 152–168Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Martin Treiblmayr
    • 1
  • Simon Scheider
    • 2
  • Antonio Krüger
    • 3
  • Marc von der Linden
    • 4
  1. 1.SAP Research Walldorf, SAP AGWalldorfGermany
  2. 2.Institute for GeoinformaticsWestfälische Wilhelms-Universität MünsterMünsterGermany
  3. 3.German Research Center for Artificial IntelligenceSaarbrückenGermany
  4. 4.SAP AGWalldorfGermany

Personalised recommendations