GeoInformatica

, Volume 15, Issue 4, pp 727–767

MOVIES: indexing moving objects by shooting index images

  • Jens Dittrich
  • Lukas Blunschi
  • Marcos Antonio Vaz Salles
Article

DOI: 10.1007/s10707-011-0122-y

Cite this article as:
Dittrich, J., Blunschi, L. & Vaz Salles, M.A. Geoinformatica (2011) 15: 727. doi:10.1007/s10707-011-0122-y

Abstract

With the exponential growth of moving objects data to the Gigabyte range, it has become critical to develop effective techniques for indexing, updating, and querying these massive data sets. To meet the high update rate as well as low query response time requirements of moving object applications, this paper takes a novel approach in moving object indexing. In our approach, we do not require a sophisticated index structure that needs to be adjusted for each incoming update. Rather, we construct conceptually simple short-lived index images that we only keep for a very short period of time (sub-seconds) in main memory. As a consequence, the resulting technique MOVIES supports at the same time high query rates and high update rates, trading this property for query result staleness. Moreover, MOVIES is the first main memory method supporting time-parameterized predictive queries. To support this feature, we present two algorithms: non-predictive MOVIES and predictive MOVIES. We obtain the surprising result that a predictive indexing approach—considered state-of-the-art in an external-memory scenario—does not scale well in a main memory environment. In fact, our results show that MOVIES outperforms state-of-the-art moving object indexes such as a main-memory adapted Bx-tree by orders of magnitude w.r.t. update rates and query rates. In our experimental evaluation, we index the complete road network of Germany consisting of 40,000,000 road segments and 38,000,000 nodes. We scale our workload up to 100,000,000 moving objects, 58,000,000 updates per second and 10,000 queries per second, a scenario at a scale unmatched by any previous work.

Keywords

Moving objects Indexing Differential indexing Large update rates Spatial indexing High dimensional indexing 

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jens Dittrich
    • 1
  • Lukas Blunschi
    • 2
  • Marcos Antonio Vaz Salles
    • 3
  1. 1.Information Systems GroupSaarland UniversitySaarbrückenGermany
  2. 2.Systems GroupETH ZurichZürichSwitzerland
  3. 3.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations