GeoInformatica

, Volume 15, Issue 3, pp 455–496 | Cite as

A data model and query language for spatio-temporal decision support

Article

Abstract

In recent years, applications aimed at exploring and analyzing spatial data have emerged, powered by the increasing need of software that integrates Geographic Information Systems (GIS) and On-Line Analytical Processing (OLAP). These applications have been called SOLAP (Spatial OLAP). In previous work, the authors have introduced Piet, a system based on a formal data model that integrates in a single framework GIS, OLAP (On-Line Analytical Processing), and Moving Object data. Real-world problems are inherently spatio-temporal. Thus, in this paper we present a data model that extends Piet, allowing tracking the history of spatial data in the GIS layers. We present a formal study of the two typical ways of introducing time into Piet: timestamping the thematic layers in the GIS, and timestamping the spatial objects in each layer. We denote these strategies snapshot-based and timestamp-based representations, respectively, following well-known terminology borrowed from temporal databases. We present and discuss the formal model for both alternatives. Based on the timestamp-based representation, we introduce a formal First-Order spatio-temporal query language, which we denote \(\mathcal{L}_t,\) able to express spatio-temporal queries over GIS, OLAP, and trajectory data. Finally, we discuss implementation issues, the update operators that must be supported by the model, and sketch a temporal extension to Piet-QL, the SQL-like query language that supports Piet.

Keywords

OLAP Spatio-temporal databases GIS SOLAP 

References

  1. 1.
    Abiteboul S, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley, Reading, MAGoogle Scholar
  2. 2.
    Ahmed TO, Miquel M (2005) Multidimensional structures dedicated to continuous spatiotemporal phenomena. In: 22nd British national conference on databases (BNCOD). Sunderland, UK, pp 29–40Google Scholar
  3. 3.
    Ahmed TO (2008) Continuous spatial data warehousing. In: International Arab conference on information technologyGoogle Scholar
  4. 4.
    Allen J (1983) Maintaining knowledge about temporal intervals. Commun ACM 26(11):832–843CrossRefGoogle Scholar
  5. 5.
    Armstrong MP (1988) Temporality in spatial databases. In: GIS/LIS. San Antonino, Texas, USA, pp 880–889Google Scholar
  6. 6.
    Bédard Y, Merret T, Han J (2001) Fundamentals of spatial data warehousing for geographic knowledge discovery, chap 3. Taylor & Francis, pp 53 – 73Google Scholar
  7. 7.
    Bédard Y, Rivest S, Proulx MJ (2007) Spatial Online Analytical Processing (SOLAP): concepts, architectures, and solutions from a geomatics engineering perspective, chap 13. IGI Global, pp 298–319Google Scholar
  8. 8.
    Bettini C, Dyreson C, Evans W, Snodgrass R, Sean Wang X (1998) A glossary of time granularity concepts. Temporal databases: research and practice. Lect Notes Comput Sci 1399:406–411CrossRefGoogle Scholar
  9. 9.
    Borges C, Laender AHF, Davis CA (1999) Piet-QL: spatial data integrity constraints in object oriented geographic data modeling. In: 7th ACM SIGSPATIAL international symposium on advances in geographic information systems (ACM-GIS). Kansas City, USA, pp 1–6Google Scholar
  10. 10.
    Cabibbo L, Torlone R (1997) Querying multidimensional databases. In: Database programming languages. Lecture notes in computer science, vol 1369. Springer, pp 319–335Google Scholar
  11. 11.
    Cockcroft S (1997) A taxonomy of spatial data integrity. Geoinformatica 1(4):327–343CrossRefGoogle Scholar
  12. 12.
    Consens M, Mendelzon A (1990) Low complexity aggregation in graphlog and datalog. In: Third international conference on database theory (ICDT). Paris, France, pp 379–394Google Scholar
  13. 13.
    Dyreson C, Evans W, Lin H, Snodgrass R (2000) Efficiently supporting temporal granularities. IEEE transactions on data and knowledge engineering (TKDE), vol 12(4), pp 568–587CrossRefGoogle Scholar
  14. 14.
    Eder J, Koncilia C, Morzy T (2002) The comet metamodel for temporal data warehouses. In: CAiSE. Toronto, Canada, pp 83–99Google Scholar
  15. 15.
    Egenhofer M, J. Herring J (1991) Categorizing binary topological relationships between regions, lines, and points in geographic databases. Technical report, Department of Surveying Engineering, University of MaineGoogle Scholar
  16. 16.
    Escribano A, Gomez L, Kuijpers B, Vaisman AA (2007) Piet: a gis-olap implementation. In: ACM 10th international workshop on data warehousing and OLAP (DOLAP). ACM, pp 73–80Google Scholar
  17. 17.
    Gómez L, Kuijpers B, Vaisman AA (2008) Aggregation languages for moving object and places of interest. In: ACM symposium on applied computing SAC. Fortaleza, Ceara, Brazil, pp 857–862Google Scholar
  18. 18.
    Gómez L, Vaisman A, Zich S (2008) Piet-QL: a query language for GIS-OLAP integration. In: 16th ACM SIGSPATIAL international symposium on advances in geographic information systems (ACM-GIS), 27. Irvine, CA, USAGoogle Scholar
  19. 19.
    Gómez L, Haesevoets S, Kuijpers B, Vaisman AA (2009) Spatial aggregation: data model and implementation. Inf Syst 34(6):551–576CrossRefGoogle Scholar
  20. 20.
    Gray J, Bosworth A, Layman A, Pirahesh H (1997) Data cube: a relational operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery (1):29–53CrossRefGoogle Scholar
  21. 21.
    Güting RH, Böhlen M, Jensen C, Lorentzos N, Schneider M, Vazirgiannis M (2000) A foundation for representing and quering moving objects. ACM Trans Database Syst 25(1):1–42CrossRefGoogle Scholar
  22. 22.
    Güting RH, de Almeida VT, Ansorge D, Behr T, Ding Z, Höse T, Hoffmann F, Spiekermann M, Telle U (2005) SECONDO: an extensible dbms platform for research prototyping and teaching. In: 21st international conference on data engineering (ICDE). Tokyo, Japan, pp 1115–1116Google Scholar
  23. 23.
    Hadzilacos T, Tryfona N (1996) Logical data modelling for geographical applications. Int J Geogr Inf Sci 10(2):179–203CrossRefGoogle Scholar
  24. 24.
    Han J, Stefanovic N, Koperski K (1998) Selective materialization: an efficient method for spatial data cube construction. In: Research and development in knowledge discovery and data mining (PAKDD). Lecture notes in computer science, vol 1394. Springer, pp 144–158Google Scholar
  25. 25.
    Hurtado C, Mendelzon A, Vaisman A (1999) Maintaining data cubes under dimension updates. In: 15th international conference on data engineering (IEEE/ICDE). Sydney, Australia, pp 346–355Google Scholar
  26. 26.
    Hurtado CA, Mendelzon AO (2001) Reasoning about summarizability in heterogeneous multidimensional schemas. In: International conference of database theory (ICDT), pp 375–389Google Scholar
  27. 27.
    Hurtado CA, Mendelzon AO (2002) OLAP dimension constraints. In: 21st ACM SIGACT-SIGMOD-SIGART symposium on principles of database system (PODS). Madison, Wisconsin, USA, pp 169–179Google Scholar
  28. 28.
    Kemp KK (1997) Fields as a framework for integrating gis and environmental process models. Trans GIS 1(3):219–246CrossRefGoogle Scholar
  29. 29.
    Kimball R (1996) The data warehouse toolkit. Wiley, New YorkGoogle Scholar
  30. 30.
    Kimball R, Ross M (2002) The data warehouse toolkit: the complete guide to dimensional modeling, 2nd edn. Wiley, New YorkGoogle Scholar
  31. 31.
    Klug A (1982) Equivalence of relational algebra and relational calculus query languages having aggregate functions. J ACM 29(3):699–717CrossRefGoogle Scholar
  32. 32.
    Kuijpers B, Vaisman A (2007) A data model for moving objects supporting aggregation. In: Proceedings of the first international workshop on spatio-temporal data mining (STDM’07). Istambul, TurkeyGoogle Scholar
  33. 33.
    Langran G, Chrisman NR (1988) A framework for temporal geographic information systems. Cartographica 25(3):1–14Google Scholar
  34. 34.
    López IFV, Snodgrass R, Moon B (2005) Spatiotemporal aggregate computation: a survey. IEEE Trans Knowl Data Eng 17(2):271–286CrossRefGoogle Scholar
  35. 35.
    Malinowski E, Zimányi E (2004) Representing spatiality in a conceptual multidimensional model. In: 12th ACM international workshop on geographic information systems(GIS). Washington, DC, USA, pp 12–22Google Scholar
  36. 36.
    Mendelzon AO, Vaisman AA (2000) Temporal queries in OLAP. In: 26th international conference on very large data base (VLDB). Cairo, Egypt, pp 242–253Google Scholar
  37. 37.
    Mendelzon AO, Vaisman AA (2003) Time in multidimensional databases. In: Multidimensional databases. IDEA Group, pp 166–199Google Scholar
  38. 38.
    Orlando S, Orsini R, Raffaetà A, Roncato A, Silvestri C (2007) Spatio-temporal aggregations in trajectory data warehouses. In: Data warehousing and knowledge discovery (DaWak). Lecture notes in computer science, vol 4654. Springer, Regensburg, Germany, pp 66–77Google Scholar
  39. 39.
    Paolino L, Tortora G, Sebillo M, Vitiello G, Laurini R (2003) Phenomena: a visual query language for continuous fields. In: 11th ACM international workshop on geographic information systems (GIS). New Orleans, LA, USA, pp 147–153Google Scholar
  40. 40.
    Papadias D, Kalnis P, Zhang J, Tao Y (2001) Efficient OLAP operations in spatial data warehouses. In: Advances in spatial and temporal databases (SSTD). Lecture notes in computer science, vol 2121. Springer, pp 443–459Google Scholar
  41. 41.
    Papadias D, Tao Y, Kalnis P, Zhang J (2002) Indexing spatio-temporal data warehouses. In: 18th international conference on data engineering (ICDE). San Jose, CA, USA, pp 166–175Google Scholar
  42. 42.
    Papadimitriou CH, Suciu D, Vianu V (1996) Topological queries in spatial databases. In: Proceedings 15th ACM SIGACT-SIGMOD-SIGART symposium on principles of database system (PODS). Montreal, Canada, pp 81–92Google Scholar
  43. 43.
    Paredaens J, den Bussche JV, Gucht DV (1994) Towards a theory of spatial database queries. In: 13th ACM SIGACT-SIGMOD-SIGART symposium on principles of database systems, (PODS). Minneapolis, USA, pp 279–288Google Scholar
  44. 44.
    Paredaens J, Kuper G, Libkin L (eds) (2000) Constraint databases. Springer, Berlin Heidelberg New YorkGoogle Scholar
  45. 45.
    Pedersen TB, Tryfona N (2001) Pre-aggregation in spatial data warehouses. In: Advances in spatial and temporal databases (SSTD), pp 460–480Google Scholar
  46. 46.
    Pelekis N (2002) Stau: a spatio-temporal extension to ORACLE DBMS. Ph.D thesis, UMIST Department of ComputationGoogle Scholar
  47. 47.
    Pelekis N, Theodoulidis B, Kopanakis Y, Theodoridis Y (2004) Literature review of spatio-temporal database models. The Knowledge Engineering Review Journal 19(3):235–274Google Scholar
  48. 48.
    Pelekis N, Theodoridis Y, Vosinakis S, Panayiotopoulos T (2006) Hermes—a framework for location-based data management. In: 10th international conference on extending database technology. Munich, Germany, pp 1130–1134Google Scholar
  49. 49.
    Peuquet D, Duan N (1995) An event-based spatiotemporal data model (estdm) for temporal analysis of geographical data. Int J Geogr Inf Syst 9(1):7–24CrossRefGoogle Scholar
  50. 50.
    Pourabbas E (2003) Cooperation with geographic databases. In: Multidimensional databases: problems and solutions. Idea group, pp 393–432Google Scholar
  51. 51.
    Rao F, Zhang L, Yu X, Li Y, Chen Y (2003) Spatial hierarchy and OLAP-favored search in spatial data warehouse. In: ACM 6th international workshop on data warehousing and OLAP (DOLAP). New Orleans, LA, USA, pp 48–55Google Scholar
  52. 52.
    Rigaux P, Scholl M, Voisard A (2001) Spatial databases: with application to GIS. Data management systems. Morgan Kaufmann, San Mateo, CAGoogle Scholar
  53. 53.
    Rivest S, Bédard Y, Marchand P (2001) Towards better support for spatial decision making: defining the characteristics of spatial on-line analytical processing (SOLAP). Geomatica 55(4):539–555Google Scholar
  54. 54.
    Rodriguez A, Bertossi L, Caniupan M (2008) An inconsistency tolerant approach to querying spatial databases. In: 16th ACM SIGSPATIAL international symposium on advances in geographic information systems (ACM-GIS), 36. Irvine, CA, USAGoogle Scholar
  55. 55.
    Shanmugasundaram J, Fayyad UM, Bradley PS (1999) Compressed data cubes for olap aggregate query approximation on continuous dimensions. In: 5th ACM SIGKDD international conference on knowledge discovery and data mining (KDD). San Diego, CA, USA, pp 223–232Google Scholar
  56. 56.
    Shekhar S, Lu CT, Tan X, Chawla S, Vatsavai RR (2001) Map Cube: a visualization tool for spatial data warehouses, chap 4. Taylor and Francis, pp 73–108Google Scholar
  57. 57.
    Snodgrass R (ed) (1995) The TSQL2 temporal query language. Kluwer, Boston, MAGoogle Scholar
  58. 58.
    Stefanovic N, Han J, Koperski K (2000) Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Trans Knowl Data Eng 12(6):938–958CrossRefGoogle Scholar
  59. 59.
    Tansel A, Clifford J, Gadia S (eds) (1993) Temporal databases: theory, design and implementation. Benjamin Cummings, Redwood City, CAGoogle Scholar
  60. 60.
    Toman D (1996) Point vs. interval-based query languages for temporal databases. In: 15th ACM SIGACT-SIGMOD-SIGART symposium on principles of database system (PODS). Montreal, Canada, pp 58–67Google Scholar
  61. 61.
    Tryfona N, Hadzilacos Th (1998) Logical data modelling of spatio temporal applications: definitions and a model. In: International database engineering and applications symposium(IDEAS). Cardiff, Wales, UK, pp 14–23Google Scholar
  62. 62.
    Tryfona N, Jensen C (1999) Conceptual data modeling for spatiotemporal applications. Geoinformatica 3(3):245–268CrossRefGoogle Scholar
  63. 63.
    Tryfona N, Price R, Jensen C (2003) Conceptual models for spatiotemporal applications. Spatio-temporal databases: the CHOROCHRONOS approach, pp 79–116Google Scholar
  64. 64.
    Vaisman AA, Izquierdo A, Ktenas M (2008) A web-based architecture for temporal olap. Int J Web Eng Technol 4(4):465–494CrossRefGoogle Scholar
  65. 65.
    Vaisman A, Zimányi E (2009) What is spatiotemporal data warehousing? Data warehousing and knowledge discovery (DaWak). In: Proceedings of DaWaK, pp 9–23Google Scholar
  66. 66.
    Vaisman A, Zimányi E (2009) A multidimensional model representing continuous fields in spatial data warehouses. In: Proceedings of ACM-SIGSPATIAL, pp 168–177Google Scholar
  67. 67.
    Wachowicz M, Healey R (1994) Towards temporality in GIS. In: Innovation in GIS, vol I. Taylor & Francis, pp 105–115Google Scholar
  68. 68.
    Worboys MF (1992) A model for spatio-temporal information. In: Proceedings of the 5th international symposium on spatial data handling. Charleston, South Carolina, pp 602–611Google Scholar
  69. 69.
    Worboys MF (1995) GIS: a computing perspective. Taylor & Francis, New YorkGoogle Scholar
  70. 70.
    Zeiler M (1999) Modeling our world: the ESRI guide to geodatabase design. ESRI PressGoogle Scholar
  71. 71.
    Zhang L, Li Y, Rao F, Yu X, Chen Y, Liu D (2003) An approach to enabling spatial OLAP by aggregating on spatial hierarchy. In: Data warehousing and knowledge discovery (DaWak). Lecture notes in computer science, vol 2737. Springer, Prague, Czech Republic, pp 35–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Leticia Gómez
    • 1
  • Bart Kuijpers
    • 2
  • Alejandro Vaisman
    • 3
  1. 1.Instituto Tecnológico de Buenos AiresBuenos AiresArgentina
  2. 2.Hasselt University and Transnational University of LimburgDiepenbeekBelgium
  3. 3.Universidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations