GeoInformatica

, Volume 14, Issue 3, pp 353–378 | Cite as

OCL for formal modelling of topological constraints involving regions with broad boundaries

  • Lotfi Bejaoui
  • François Pinet
  • Michel Schneider
  • Yvan Bédard
Article

Abstract

Integrity constraints can control topological relations of objects in spatial databases. These constraints can be modelled using formal languages such as the spatial extension of the Object Constraint Language (Spatial OCL). This language allows the expression of topological integrity constraints involving crisp spatial objects but it does not support constraints involving spatial objects with vague shapes (e.g. forest stand, pollution zone, valley or lake). In this paper, we propose an extension of Spatial OCL based on (1) a geometric model for objects with vague shapes, and (2) an adverbial approach for modelling topological constraints involving regions with broad boundaries. This new language provides an easiness in the formal modelling of these complex constraints. Our approach has been implemented in a code generator. A case study is also presented in the paper in the field of agriculture spreading activities. AOCLOVS takes account of the shape vagueness of spread parcel and improve spatial reasoning about them.

Keywords

Spatial databases Geographical information systems Data modelling Integrity constraint Object constraint language (OCL) Regions with broad boundaries 

References

  1. 1.
    Altman D (1994) Fuzzy set theoretic approaches for handling imprecision in spatial analysis. Int J Geogr Inf Syst 8:271–289CrossRefGoogle Scholar
  2. 2.
    Bejaoui L, Bédard Y, Pinet F, Saheli M, Schneider M (2007) Logical consistency for vague spatiotemporal objects and relations. In: 5th International symposium on spatial data quality (ISSDQ 2007), Enschede, NLD, 13–15 June 2007, 8 pGoogle Scholar
  3. 3.
    Bejaoui L, Pinet F, Bédard Y, Schneider M (2008) Qualified topological relations between spatial objects with possibly vague shape. to appear in International Journal of Geographical Information ScienceGoogle Scholar
  4. 4.
    Bejaoui L, Pinet F, Bédard Y, Schneider M (2008) An Adverbial Approach for Formal Specification of Topological Constraints Involving Regions with Broad Boundaries, Lecture Notes in Computer Science, vol. 5231 (ER 2008), p. 383–396Google Scholar
  5. 5.
    Borges KAV, Davis CA, Laender AHF (2001) OMT-G: An Object-Oriented Data Model for Geographic Applications. GeoInformatica 5:221–260CrossRefGoogle Scholar
  6. 6.
    Brown DG (1998) Classification and boundary vagueness in mapping presettlement forest types. Int J Geogr Inf Syst 12:105–129CrossRefGoogle Scholar
  7. 7.
    Burrough PA (1989) Fuzzy mathematical methods for soil survey and land evaluation. J Soil Sci 40:477–492CrossRefGoogle Scholar
  8. 8.
    Burrough PA, Frank AU (1996) Geographic objects with indeterminate boundariesGoogle Scholar
  9. 9.
    Claramunt C (2000) Extending Ladkin’s algebra on non-convex intervals towards an algebra on union-of regions. In: Proceedings of the 8th ACM international symposium on Advances in geographic information systems. ACM, Washington, D.C., United StatesGoogle Scholar
  10. 10.
    Clementini E, Di Felice P (1997) Approximate Topological Relations. Int J Approx Reason 16:173–204CrossRefGoogle Scholar
  11. 11.
    Cockcroft S (2004) The Design and Implementation of a Repository for the Management of Spatial Data Integrity Constraints. GeoInformatica 8:49–69CrossRefGoogle Scholar
  12. 12.
    Cockcroft S (2001) Modelling Spatial Data Integrity Rules at the Metadata Level. In: 6th International Conference on GeoComputation, Brisbane, Australia, 2001 september 24–26Google Scholar
  13. 13.
    Cockcroft S (1997) A Taxonomy of Spatial Data Integrity Constraints. GeoInformatica 1:327–343CrossRefGoogle Scholar
  14. 14.
    Cockcroft S (1998) User Defined Spatial Business Rules: Storage, Management and Implementation—A Pipe Network Case Study. In: 10th Colloquium of the Spatial Information Research Centre, University of Otago, Dunedin, New-Zealand, 16–19 novembre 1998. p 73–81Google Scholar
  15. 15.
    Cohn AG, Bennett B, Gooday J, Gotts NM (1997) Qualitative Spatial Representation and Reasoning with the Region Connection Calculus. GeoInformatica 1:275–316CrossRefGoogle Scholar
  16. 16.
    Cohn AG, N.M Gotts (1996) The ‘Egg-Yolk’ Representation of Regions with Indeterminate Boundaries. In: GISDATA Specialist Meeting on Spatial Objects with Undetermined Boundaries. Taylor & Francis, p 171–187Google Scholar
  17. 17.
    Cook S, Daniels J (1994) Designing object systems-object oriented modeling with Syntropy. Prentice-HallGoogle Scholar
  18. 18.
    Demuth B (2005) The Dresden OCL Toolkit and the Business Rules Approach. In: European Business Rules Conference (EBRC2005), AmsterdamGoogle Scholar
  19. 19.
    Demuth B, Hussmann H (1999) Using UML/OCL Constraints for Relational Database Design. In: «UML»’99—The Unified Modeling Language. p 751–751Google Scholar
  20. 20.
    Demuth B, Hussmann H, Loecher S (2001) OCL as a Specification Language for Business Rules in Database Applications. In: «UML» 2001—The Unified Modeling Language. Modeling Languages, Concepts, and Tools. p 104–117Google Scholar
  21. 21.
    Demuth B, Loecher S, Zschaler S (2004) Structure of the Dresden OCL Toolkit. In: 2nd International Fujaba Days “MDA with UML and Rule–based Object Manipulation”, Darmstadt, Germany, September 15–17Google Scholar
  22. 22.
    Dilo A (2006) Representation of and reasoning with vagueness in spatial information: A system for handling vague objects. Wageningen University and ITC, 187 pGoogle Scholar
  23. 23.
    Duboisset M, Pinet F, Kang MA, Schneider M (2005) Precise modeling and verification of topological integrity constraints in spatial databases: from an expressive power study to code generation principles. Lect Notes Comput Sci 3716:465–482CrossRefGoogle Scholar
  24. 24.
    Egenhofer M, Herring J (1990) A mathematical framework for the definition of topological relations. In: Fourth International Symposium on Spatial Data Handling, Zurich, Switzerland. p 803–813Google Scholar
  25. 25.
    Egenhofer M, Franzosa J (1990) Point-set Topological relations. Int J Geogr Inf Syst 5(2):161–174CrossRefGoogle Scholar
  26. 26.
    Erwig M, Schneider M (1997) Vague regions. In: Advances in Spatial Databases. p 298–320Google Scholar
  27. 27.
    Frank AU (2001) Tiers of ontology and consistency constraints in geographical information systems. Int J Geogr Inf Syst 15:667–678CrossRefGoogle Scholar
  28. 28.
    Hasenohr P, Pinet F (2006) Modeling of a spatial DSS template in support to the Common agricultural policy. J decis syst 15:181–196CrossRefGoogle Scholar
  29. 29.
    Hazarika S, Cohn A (2001) Qualitative Spatio-Temporal Continuity. In: Spatial Information Theory. p 92–107Google Scholar
  30. 30.
    Hwang S, Thill J-C (2005) Modeling Localities with Fuzzy Sets and GIS. In: Fuzzy Modeling with Spatial Information for Geographic Problems. p 71–104Google Scholar
  31. 31.
    Kang MA, Pinet F, Schneider M, Chanet JP, Vigier F (2004) How to design geographic database? Specific UML profile and spatial OCL applied to wireless Ad Hoc networks. In: 7th Conference on Geographic Information Science (AGILE'2004), Heraklion, GRC, April 29-May 1 2004. p 289–299Google Scholar
  32. 32.
    Klasse Objecten (2005) OCL Tools and Services Web Site. In: <http://www.klasse.nl/ocl>
  33. 33.
    Kleppe A, Warmer J (2003) Object Constraint Language, the Getting your Models Ready for MDA. Addison-WesleyGoogle Scholar
  34. 34.
    Miliauskaite E, Nemuraite L (2005) Representation of Integrity Constraints in Conceptual Models. Information Technology and Control 34:355–365Google Scholar
  35. 35.
    OMG (2007) Unified Modelling Language: OCL, version 2.0. OMG Specification In:Google Scholar
  36. 36.
    Parent C, Spaccapietra S, Zimanyi E (2006) Conceptual Modeling for Traditional and Spatio-temporal Applications. SpringerGoogle Scholar
  37. 37.
    Pinet F, Duboisset M, Demuth B, Schneider M, Soulignac V, Barnabe F (2009) Constraints modeling in Agricultural Databases. In: Advances in Modeling Agricultural Systems. SpringerGoogle Scholar
  38. 38.
    Pinet F, Duboisset M, Soulignac V (2007) Using UML and OCL to maintain the consistency of spatial data in environmental information systems. Environ Model Softw 22:1217–1220CrossRefGoogle Scholar
  39. 39.
    Raffaeta A, Ceccarelli T, Centeno D, Giannotti F, Massolo A, Parent C, Renso C, Spaccapietra S, Turini F (2008) An application of advanced spatio-temporal formalisms to behavioural ecology. GeoInformatica 12:37–72CrossRefGoogle Scholar
  40. 40.
    Randell DA, Cohn AG (1989) Modelling topological and metrical properties of physical processes. In: 1st International Conference on Principles of Knowledge Representation and Reasoning (KR’89). p 357–368Google Scholar
  41. 41.
    Reis R, Egenhofer MJ, Matos J (2006) Topological relations using two models of uncertainty for lines. In: 7th international Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, 5–7 July, Lisbon, Portugal. p 286–295Google Scholar
  42. 42.
    Salehi M, Bédard Y, Mir AM, Brodeur J (2007) On Languages for the Specification on Integrity Constraints in Spatial Conceptual Models, Semantic and Conceptual Issues in GISs (SeCoGIS), November 05–09. Auckland, New ZealandGoogle Scholar
  43. 43.
    Servigne S, Ubeda T, Puricelli A, Laurini R (2000) A methodology for spatial consistency improvement of geographic databases. GeoInformatica 4:7–34CrossRefGoogle Scholar
  44. 44.
    Souris M (2006) Contraintes d’intégrité spatiales. In: Devillers R, Jeansoulin R (eds) Qualité de l’information géographique. Lavoisier, p 100–123Google Scholar
  45. 45.
    Tang T (2004) Spatial object modeling in fuzzy topological spaces: with applications to land cover change. University of TwenteGoogle Scholar
  46. 46.
    Warmer J, Kleppe A (1999) The Object Constraint Language Precise Modeling with UML. Addison-WesleyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Lotfi Bejaoui
    • 1
    • 2
    • 3
    • 4
  • François Pinet
    • 3
  • Michel Schneider
    • 3
    • 4
  • Yvan Bédard
    • 1
    • 2
  1. 1.Centre for Research in Geomatics (CRG)Laval UniversityQuebecCanada
  2. 2.Industrial Research Chair in Geospatial Databases for Decision SupportLaval UniversityQuebecCanada
  3. 3.CemagrefClermont FerrandFrance
  4. 4.Blaise Pascal UniversityClermont FerrandFrance

Personalised recommendations