GeoInformatica

, Volume 15, Issue 1, pp 111–135 | Cite as

openModeller: a generic approach to species’ potential distribution modelling

  • Mauro Enrique de Souza Muñoz
  • Renato De Giovanni
  • Marinez Ferreira de Siqueira
  • Tim Sutton
  • Peter Brewer
  • Ricardo Scachetti Pereira
  • Dora Ann Lange Canhos
  • Vanderlei Perez Canhos
Article

Abstract

Species’ potential distribution modelling is the process of building a representation of the fundamental ecological requirements for a species and extrapolating these requirements into a geographical region. The importance of being able to predict the distribution of species is currently highlighted by issues like global climate change, public health problems caused by disease vectors, anthropogenic impacts that can lead to massive species extinction, among other challenges. There are several computational approaches that can be used to generate potential distribution models, each achieving optimal results under different conditions. However, the existing software packages available for this purpose typically implement a single algorithm, and each software package presents a new learning curve to the user. Whenever new software is developed for species’ potential distribution modelling, significant duplication of effort results because many feature requirements are shared between the different packages. Additionally, data preparation and comparison between algorithms becomes difficult when using separate software applications, since each application has different data input and output capabilities. This paper describes a generic approach for building a single computing framework capable of handling different data formats and multiple algorithms that can be used in potential distribution modelling. The ideas described in this paper have been implemented in a free and open source software package called openModeller. The main concepts of species’ potential distribution modelling are also explained and an example use case illustrates potential distribution maps generated by the framework.

Keywords

Potential distribution modelling Ecological niche modelling Predicting species distribution openModeller 

References

  1. 1.
    Peterson AT (2006) Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics 3:59–72Google Scholar
  2. 2.
    Canhos VP, Souza S, De Giovanni R, Canhos DAL (2004) Global Biodiversity Informatics: setting the scene for a “new world” of ecological forecasting. Biodiversity Informatics 1:1Google Scholar
  3. 3.
    Yesson C, Brewer PW, Sutton T, Caithness N, Pahwa JS, Burgess M, Gray WA, White RJ, Jones AC, Bisby FA, Culham A (2007) How global is the Global Biodiversity Information Facility. PLoS ONE 2(11):e1124CrossRefGoogle Scholar
  4. 4.
    Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232CrossRefGoogle Scholar
  5. 5.
    Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30(4):550–560Google Scholar
  6. 6.
    Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann AL, Li J, Lohman LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMcC, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  7. 7.
    Manel S, Dias JM, Buckton ST, Ormerod SJ (1999) Alternative methods for predicting species distribution: an illustration with Himalayan river birds. J Appl Ecol 36:734–747CrossRefGoogle Scholar
  8. 8.
    Johnson CJ, Gillingham MP (2005) An evaluation of mapped species distribution models used for conservation planning. Environ Conserv 32:117–128CrossRefGoogle Scholar
  9. 9.
    Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  10. 10.
    Carpenter G, Gillison AN, Winter J (1993) DOMAIN: a flexible modeling procedure for mapping potential distributions of animals and plants. Biodivers Conserv 2:667–680CrossRefGoogle Scholar
  11. 11.
    Scachetti-Pereira R (2002) Desktop GARP, http://www.nhm.ku.edu/desktopgarp, October, 24, 2007
  12. 12.
    Thuiller W (2003) BIOMOD—optimizing prediction of species distributions and projecting potential future shifts under global change. Glob Chang Biol 9:1353–1362CrossRefGoogle Scholar
  13. 13.
    Garzón MB, Blazek R, Neteler M, de Dios RS, Ollero HS, Furlanello C (2006) Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula. Ecol Model 97:383–393CrossRefGoogle Scholar
  14. 14.
    MacArthur RH (1972) Geographical ecology: patterns in the distribution of species. Harper and Row, New YorkGoogle Scholar
  15. 15.
    Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–442Google Scholar
  16. 16.
    Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, https://journals.ku.edu/index.php/jbi/article/view/4 Google Scholar
  17. 17.
    Anderson RP, Laverde M, Peterson AT (2002) Using niche-based GIS modeling to test geographic predictions of competitive exclusion and competitive release in South American pocket mice. Oikos 93:3–16CrossRefGoogle Scholar
  18. 18.
    Ferrier S, Drielsma M, Manion G, Watson G (2002) Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Biodivers Conserv 11(12):2309–2338CrossRefGoogle Scholar
  19. 19.
    Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12(4):334–350CrossRefGoogle Scholar
  20. 20.
    Beaman R, Conn B (2003) Automated geoparsing and georeferencing of Malesian collection locality data. Telopea 10:43–52Google Scholar
  21. 21.
    Guralnick RP, Hill AW, Lane M (2007) Towards a collaborative, global infrastructure for biodiversity assessment. Ecol Lett 10(8):663–672CrossRefGoogle Scholar
  22. 22.
    Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographic information systems and science, 2nd edn. John Wiley & Sons, Chichester, 517 pGoogle Scholar
  23. 23.
    Nix HA (1986) A biogeographic analysis of Australian elapid snakes. In: Longmore R (ed) Atlas of Australian elapid snakes. Australian Flora and Fauna Series 8:4–15Google Scholar
  24. 24.
    Stockwell DRB, Noble IR (1992) Induction of sets of rules from animal distribution data: a robust and informative method of analysis. Math Comput Simul 33:385–390CrossRefGoogle Scholar
  25. 25.
    Mladenoff DJ, Sickley TA, Haight RG, Wydeven AP (1995) A regional landscape analysis and prediction of favorable greywolf habitat in the northern Great Lakes region. Conserv Biol 9:279–294CrossRefGoogle Scholar
  26. 26.
    Bian L, West E (1997) GIS modeling of Elk calving habitat in a prairie environment with statistics. Photogramm Eng Remote Sensing 63:161–167Google Scholar
  27. 27.
    Frescino TS, Edwards TC, Moisen GG (2001) Modeling spatially explicit forest structural attributes using generalized additive models. J Veg Sci 12:15–26Google Scholar
  28. 28.
    Kelly NM, Fonseca M, Whitfield P (2001) Predictive mapping for management and conservation of seagrass beds in North Carolina. Aquatic Conservation: Marine and Freshwater Ecosystems 11(6):437–451CrossRefGoogle Scholar
  29. 29.
    Guisan A, Edwards TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol Model 157:89–100CrossRefGoogle Scholar
  30. 30.
    Felicísimo AM, Francés E, Fernández JM, González-Díez A, Varas J (2002) Modeling the potential distribution of forests with a GIS. Photogramm Eng Remote Sensing 68:455–462Google Scholar
  31. 31.
    Fonseca MS, Whitfield PE, Kelly NM, Bell SS (2002) Statistical modeling of seagrass landscape pattern and associated ecological attributes in relation to hydrodynamic gradients. Ecol Appl 12(1):218–237CrossRefGoogle Scholar
  32. 32.
    Livingston SA, Todd CS, Krohn WB, Owen RB (1990) Habitat models for nesting bald eagles in Maine. J Wildl Manage 54(4):644–653CrossRefGoogle Scholar
  33. 33.
    Fielding AH, Haworth PF (1995) Testing the generality of bird-habitat models. Conserv Biol 9(6):1466–1481CrossRefGoogle Scholar
  34. 34.
    Pearson RG, Dawson TP, Berry PM, Harrison PA (2002) SPECIES: a spatial evaluation of climate impact on the envelope of species. Ecol Model 154(3):289–300CrossRefGoogle Scholar
  35. 35.
    Guo Q, Kelly M, Graham CH (2005) Support vector machines for predicting distribution of sudden oak death in California. Ecol Model 182(1):75–90CrossRefGoogle Scholar
  36. 36.
    Leathwick JR, Elith J, Francis MP, Hastie T, Taylor P (2006) Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Mar Ecol Prog Ser 321:267–281CrossRefGoogle Scholar
  37. 37.
    Kaschner K, Ready JS, Agbayani E, Rius J, Kesner-Reyes K, Eastwood PD, South AB, Kullander SO, Rees T, Close CH, Watson R, Pauly D, Froese R (2007) AquaMaps: predicted range maps for aquatic species, http://www.aquamaps.org, December, 2007
  38. 38.
    Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106Google Scholar
  39. 39.
    Yesson C, Culham A (2006) Phyloclimatic modelling: combining phylogenetics and bioclimatic modelling. Syst Biol 55(5):788–802CrossRefGoogle Scholar
  40. 40.
    Yesson C, Culham A (2006) A phyloclimatic study of cyclamen. BMC Evol Biol 6:72CrossRefGoogle Scholar
  41. 41.
    Vapnik V (1995) The nature of statistical learning theory. Springer-Verlag, New YorkGoogle Scholar
  42. 42.
    Ripley BD (1996) Pattern recognition and neural networks. Cambridge University Press, CambridgeGoogle Scholar
  43. 43.
    Peterson AT, Vieglais DA, Navarro-Sigüenza AG, Silva M (2003) A global distributed biodiversity information network: building the world museum. Bull Br Ornithol Club 123A:186–196Google Scholar
  44. 44.
    Soberón J, Peterson AT (2004) Biodiversity informatics: managing and applying primary biodiversity data. Philos Trans R Soc Lond, B 359:689–698CrossRefGoogle Scholar
  45. 45.
    Stein BR, Wieczorek JR (2004) Mammals of the world: MaNIS as an example of data integration in a distributed network environment. Biodiversity InformaticsGoogle Scholar
  46. 46.
    Robertson MP, Caithness N, Villet MH (2001) A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Divers Distrib 7:15–27CrossRefGoogle Scholar
  47. 47.
    Durigan G, Baitello JB, Franco GADC, Siqueira MF (2004) Plantas do cerrado paulista: imagens de uma paisagem ameaçada. Páginas & Letras Editora e Gráfica, São Paulo, 475 pGoogle Scholar
  48. 48.
    Ratter JA, Bridgewater S, Ribeiro JF, Dias TAB, Silva MR (2000) Distribuição das espécies lenhosas da fitofisionomia cerrado sentido restrito nos estados compreendidos no bioma cerrado. Bol Herb Ezechias Paulo Heringer 5:5–43Google Scholar
  49. 49.
    Durigan G, Siqueira MF, Franco GADC, Bridgewater S, Ratter JA (2003) The vegetation of priority areas for cerrado conservation in São Paulo state, Brazil. Edinb J Bot 60:217–241CrossRefGoogle Scholar
  50. 50.
    Ratter JA, Bridgewater S, Atkinson R, Ribeiro JF (1996) Analysis of the floristic composition of the Brazilian cerrado vegetation II: comparison of the woody vegetation of 98 areas. Edinb J Bot 53:153–180CrossRefGoogle Scholar
  51. 51.
    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  52. 52.
    Chapman AD (2005) Principles of data quality, version 1.0 report for the Global Biodiversity Information Facility. Copenhagen, Denmark, pp1–58, http://www2.gbif.org/DataQuality.pdf
  53. 53.
    Guralnick RP, Wieczorek JR, Beaman R, Hijmans RJ, the BioGeomancer Working Group (2006) Biogeomancer: automated georeferencing to map the world’s biodiversity data. PLoS Biol 4(11):e381CrossRefGoogle Scholar
  54. 54.
    Wheeler QD, Raven PH, Wilson EO (2004) Taxonomy: impediment or expedient? Science 303:285CrossRefGoogle Scholar
  55. 55.
    Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRefGoogle Scholar
  56. 56.
    Michie D, Spiegelhalter DJ, Taylor CC (1994) Machine learning, neural and statistical classification. Ellis Horwood, New YorkGoogle Scholar
  57. 57.
    Stockwell DRB, Peterson AT (2002) Predicting species occurrences: issues of accuracy and scale, controlling bias in biodiversity data. Island, Washington, pp 537–546Google Scholar
  58. 58.
    Johnson CM, Johnson LB, Richards C, Beasley V (2002) Predicting species occurrences: issues of accuracy and scale, predicting the occurrence of amphibians: an assessment of multiple-scale models. Island, Washington, pp 157–170Google Scholar
  59. 59.
    Chapman AD, Muñoz MES, Koch I (2005) Environmental information: placing biodiversity phenomena in an ecological and environmental context. Biodiversity Informatics, https://journals.ku.edu/index.php/jbi/article/view/5
  60. 60.
    Hartkamp AD, De Beurs K, Stein A, White JW (1999) Interpolation techniques for climate variables, NRG-GIS Series 99-01, CIMMYT, Mexico D.F.Google Scholar
  61. 61.
    Bannerman BS (1999) Positional accuracy, error and uncertainty in spatial information. Geoinnovations, Howard Springs, NT, Australia. http://www.geoinnovations.com.au/posacc/default.htm. Accessed 12 Jun 2009

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Mauro Enrique de Souza Muñoz
    • 1
  • Renato De Giovanni
    • 1
  • Marinez Ferreira de Siqueira
    • 1
  • Tim Sutton
    • 2
  • Peter Brewer
    • 3
  • Ricardo Scachetti Pereira
    • 1
  • Dora Ann Lange Canhos
    • 1
  • Vanderlei Perez Canhos
    • 1
  1. 1.Centro de Referência em Informação AmbientalCampinasBrazil
  2. 2.LanseriaSouth Africa
  3. 3.Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, B-48 Goldwin Smith HallCornell UniversityIthacaUSA

Personalised recommendations