GeoInformatica

, Volume 12, Issue 4, pp 411–433 | Cite as

Processing Optimal Sequenced Route Queries Using Voronoi Diagrams

Article

Abstract

The Optimal Sequenced Route (OSR) query strives to find a route of minimum length starting from a given source location and passing through a number of typed locations in a specific sequence imposed on the types of the locations. In this paper, we propose a pre-computation approach to OSR query in both vector and metric spaces. We exploit the geometric properties of the solution space and theoretically prove its relation to additively weighted Voronoi diagrams. Our approach recursively accesses these diagrams to incrementally build the OSR. Introducing the analogous diagrams for the space of road networks, we show that our approach is also efficiently applicable to this metric space. Our experimental results verify that our pre-computation approach outperforms the previous index-based approaches in terms of query response time.

References

  1. 1.
    Y. Du, D. Zhang, and T. Xia. “The optimal-location query,” in Proc. of SSTD’05, Angra dos Reis, Brazil, pp. 163–180, Springer, 2005.Google Scholar
  2. 2.
    C. du Mouza, P. Rigaux, and M. Scholl. “Efficient evaluation of parameterized pattern queries,” in Proceedings of CIKM’05, Bremen, Germany, pp. 728–735, ACM, 2005.Google Scholar
  3. 3.
    M. Erwig. “The graph Voronoi diagram with applications,” Networks, Vol. 36(3):156–163, 2000.CrossRefGoogle Scholar
  4. 4.
    M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V.J. Tsotras. “Complex spatio-temporal pattern queries,” in Proc. of VLDB’05, Trondheim, Norway, pp. 877–888, 2005.Google Scholar
  5. 5.
    M.I. Karavelas and M. Yvinec. “Dynamic additively weighted Voronoi diagrams in 2d,” in Proc. of the 10th Annual European Symposium on Algorithms (ESA’02), London, UK, pp. 586–598, Springer-Verlag, 2002.Google Scholar
  6. 6.
    M. Kolahdouzan and C. Shahabi. “Voronoi-based K nearest neighbor search for spatial network databases,” in VLDB 2004, Toronto, Canada, 2004.Google Scholar
  7. 7.
    F. Li, D. Cheng, M. Hadjieleftheriou, G. Kollios, and S.-H. Teng. “On trip planning queries in spatial databases,” in Proceedings of SSTD’05, Angra dos Reis, Brazil, pp. 273–290. Springer, 2005.Google Scholar
  8. 8.
    A. Okabe, B. Boots, K. Sugihara, and S.N. Chiu. Spatial Tessellations, Concepts and Applications of Voronoi Diagrams. 2nd edition, John Wiley: New York, 2000.Google Scholar
  9. 9.
    Y. Ostrovksy-Berman. “Computing transportation Voronoi diagrams in optimal time,” in Proc. of the 21st European Workshop on Computational Geometry (EWCG’05), Eindhoven, the Netherlands, pp. 159–162, 2005.Google Scholar
  10. 10.
    M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. “The optimal sequenced route query,” The VLDB Journal: The International Journal on very Large Data Bases, SSN: 1066-8888 (Print) 0949-877X (Online), doi:10.1007/s00778-006-0038-6, Issue: Online First, 2007.
  11. 11.
    M. Sharifzadeh and C. Shahabi. “Additively weighted Voronoi diagrams for optimal sequenced route queries,” in Proc. of the 3rd International Workshop on Spatio-Temporal Database Management (STDBM’06), Seoul, Korea, 2006. CEUR Workshop Proceedings, online http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-174/paper5.pdf.
  12. 12.
    M. Terrovitis, S. Bakiras, D. Papadias, and K. Mouratidis. “Constrained shortest path computation,” in Proc. of SSTD’05, Angra dos Reis, Brazil, pp. 181–199, Springer, 2005.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Information Laboratory (InfoLab), Computer Science DepartmentUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations