Advertisement

GeoInformatica

, Volume 11, Issue 2, pp 195–215 | Cite as

Efficient Detection of Patterns in 2D Trajectories of Moving Points

  • Joachim Gudmundsson
  • Marc van KreveldEmail author
  • Bettina Speckmann
Article

Abstract

Moving point object data can be analyzed through the discovery of patterns in trajectories. We consider the computational efficiency of detecting four such spatio-temporal patterns, namely flock, leadership, convergence, and encounter, as defined by Laube et al., Finding REMO—detecting relative motion patterns in geospatial lifelines, 201–214, (2004). These patterns are large enough subgroups of the moving point objects that exhibit similar movement in the sense of direction, heading for the same location, and/or proximity. By the use of techniques from computational geometry, including approximation algorithms, we improve the running time bounds of existing algorithms to detect these patterns.

Keywords

computational geometry motion patterns tracking data approximation algorithms data mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Aronov and S. Har-Peled. “On approximating the depth and related problems,” in Proc. of 16th ACM-SIAM Symposium on Discrete Algorithms, pp. 886–894, 2005.Google Scholar
  2. 2.
    S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu. “An optimal algorithm for approximate nearest neighbor searching fixed dimensions,” Journal of the ACM, Vol. 45(6):891–923, 1998.CrossRefGoogle Scholar
  3. 3.
    J.L. Bentley. “Decomposable searching problems,” Information Processing Letters, Vol. 8:244–251, 1979.CrossRefGoogle Scholar
  4. 4.
    T.M. Chan. “Approximate nearest neighbor queries revisited,” Discrete and Computational Geometry, Vol. 20(3):359–373, 1998.CrossRefGoogle Scholar
  5. 5.
    B. Chazelle. “Cutting hyperplanes for divide-and-conquer,” Discrete and Computational Geometry, Vol. 9(2):145–158, 1993.Google Scholar
  6. 6.
    T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. 2nd edition, MIT: Cambridge, MA, 2001.Google Scholar
  7. 7.
    J. Erickson. “New lower bounds for convex hull problems in odd dimensions,” SIAM Journal of Computing, Vol. 28(4):1198–1214, 1999.CrossRefGoogle Scholar
  8. 8.
    A.U. Frank, J.F. Raper, and J.-P. Cheylan (Ed.). Life and Motion of Spatial Socio-economic Units, 353–373, Taylor & Francis: New York, 2001.Google Scholar
  9. 9.
    L.J. Guibas, M.H. Overmars, and J.-M. Robert. “The exact fitting problem for points,” Computational Geometry—Theory and Applications, Vol. 6:215–230, 1996.Google Scholar
  10. 10.
    D. Halperin. “Arrangements,” in J.E. Goodman and J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, Chapter 24, 529–562, Chapman & Hall: London/CRC: Boca Raton, FL, 2004.Google Scholar
  11. 11.
    J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2001.Google Scholar
  12. 12.
    S. Iwase and H. Saito. “Tracking soccer player using multiple views,” in Proc. of the IAPR Workshop on Machine Vision Applications (MVA02), Nara, Japan, pp. 102–105, 2002.Google Scholar
  13. 13.
    G. Kollios, S. Sclaroff, and M. Betke. “Motion mining: Discovering spatio-temporal patterns in databases of human motion,” in Proc. of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, Santa Barbara, CA, pp. 25–32, 2001.Google Scholar
  14. 14.
    P. Laube and S. Imfeld. “Analyzing relative motion within groups of trackable moving point objects,” in GIScience 2002, no. 2478, Lecture Notes in Computer Science, pp. 132–144. Springer, Berlin Heidelberg New York, 2002.Google Scholar
  15. 15.
    P. Laube, M. van Kreveld, and S. Imfeld. “Finding REMO—Detecting relative motion patterns in geospatial lifelines,” in Developments in Spatial Data Handling: Proc. of the 11th International Symposium on Spatial Data Handling, Leicester, London, pp. 201–214, Springer, Berlin Heildelberg New York, 2004.Google Scholar
  16. 16.
    H.J. Miller and J. Han (Eds.). Geographic Data Mining and Knowledge Discovery, 372, Taylor & Francis:London, 2001.Google Scholar
  17. 17.
    K. Mulmuley. Computational Geometry: An Introduction Through Randomized Algorithms. Prentice Hall, 1994.Google Scholar
  18. 18.
    S. Openshaw, M. Charlton, C. Wymer, and A. Craft. “Developing a mark 1 geographical analysis machine for the automated analysis of point data sets,” International Journal of Geographical Information Systems, Vol. 1:335–358, 1987.Google Scholar
  19. 19.
    D. O’Sullivan and D.J. Unwin. Geographic Information Analysis. Wiley, 2003.Google Scholar
  20. 20.
    T. Ott and F. Swiaczny. Time-integrative Geographic Information Systems. Springer, 2001.Google Scholar
  21. 21.
    M.H. Overmars. “The design of dynamic data structures,” in Lecture Notes Computer Science, Vol. 156, Springer, Berlin Heidelberg New York, 1983.Google Scholar
  22. 22.
    Porcupine caribou herd satellite collar project. http://www.taiga.net/satellite/.
  23. 23.
    J. Roddick, K. Hornsby, and M. Spiliopoulou. “An updated bibliography of temporal, spatial, and spatio-temporal data mining research,” in TSDM 2000, no. 2007, Lecture Notes in Artificial Intelligence, pp. 147–163. Springer, Berlin Heidelberg New York, 2001.Google Scholar
  24. 24.
    H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.Google Scholar
  25. 25.
    C.-B. Shim and J.-W.Chang. “A new similar trajectory retrieval scheme using k-warping distance algorithm for moving objects,” in Proc. of the 4th International Conference on Advances in Web-age Information Management, (WAIM 2003), no. 2762, Lecture Notes in Computer Science, pp. 433–444, Springer, Berlin Heidelberg New York, 2003.Google Scholar
  26. 26.
    A. Silberschatz and A. Tuzhilin. “What makes patterns interesting in knowledge discovery systems,” IEEE Transactions on Knowledge and Data Engineering, Vol. 8:970–974, 1996.CrossRefGoogle Scholar
  27. 27.
    G. Sinha and D.M. Mark. “Measuring similarity between geospatial lifelines in studies of environmental health,” Journal of Geographical Systems, Vol. 7:115–136, 2005.CrossRefGoogle Scholar
  28. 28.
    N. Sumpter and A.J. Bulpitt. “Learning spatio-temporal patterns for predicting object behaviour,” Image Vision and Computing, Vol. 18(9):697–704, 2000.CrossRefGoogle Scholar
  29. 29.
    G. Fejes Tóth. “Packing and covering,” in J.E. Goodman and J. O’Rourke, (Eds.), Handbook of Discrete and Computational Geometry, Chapter 2, 2nd edition, 25–52, Chapman & Hall: London/CRC: Boca Raton, 2004.Google Scholar
  30. 30.
    M. Vlachos, G. Kollios, and D. Gunopulos. “Discovering similar multidimensional trajectories,” in Proc. of the 18th International Conference on Data Engineering (ICDE’02), San Jose, CA, pp. 673–684, 2002.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Joachim Gudmundsson
    • 1
  • Marc van Kreveld
    • 2
    Email author
  • Bettina Speckmann
    • 3
  1. 1.NICTASydneyAustralia
  2. 2.Department of Information and Computing SciencesUtrecht UniversityUtrechtThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceTU EindhovenEindhovenThe Netherlands

Personalised recommendations