Advertisement

GeoInformatica

, Volume 9, Issue 4, pp 297–319 | Cite as

Mobility Patterns

  • Cédric du Mouza
  • Philippe Rigaux
Article

Abstract

We present a data model for tracking mobile objects and reporting the result of queries. The model relies on a discrete view of the spatio-temporal space, where the 2D space and the time axis are respectively partitioned in a finite set of user-defined areas and in constant-size intervals. We define a generic query language to retrieve objects that match mobility patterns describing a sequence of moves. We also identify a subset of restrictions to this language in order to express only deterministic queries for which we discuss evaluation techniques to maintain incrementally the result of queries. The model is conceptually simple, efficient, and constitutes a practical and effective solution to the problem of continuously tracking moving objects with sequence queries.

Keywords

mobility patterns online evaluation spatio-temporal applications 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Abiteboul, B. Amann, S. Cluet, A. Eyal, L. Mignet, and T. Milo. “Active views for electronic commerce,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 1999.Google Scholar
  2. 2.
    R. Book, S. Even, S. Greibach, and G. Ott. “Ambiguity in graphs and expressions,” IEEE Transactions on Computers, Vol. 20(2):149–153, 1971.Google Scholar
  3. 3.
    T. Brinkhoff and J. Weitkämper. “Continuous queries within an architecture for querying XML-represented moving objects,” in Proc. Intl. Conf. on Large Spatial Databases (SSD), 2001.Google Scholar
  4. 4.
    A. Bruggemann-Klein and D. Wood. “One-unambiguous regular languages,” 1998.Google Scholar
  5. 5.
    L. Chen and R.T. Ng. “On the marriage of Lp-norms and edit distance,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 792–803, 2004.Google Scholar
  6. 6.
    J. Chen, D. DeWitt, F. Tian, and Y. Wang. “NiagaraCQ: A scalable continuous query system for internet databases,” in Proc. ACM SIGMOD Symp. on the Management of Data, 2000.Google Scholar
  7. 7.
    J. Chomicki and P.Z. Revesz. “Constraint-based interoperability of spatiotemporal databases,” in Proc. Intl. Conf. on Large Spatial Databases (SSD), vol. 1262 of Lecture Notes in Computer Science, 142–161, Springer, 1997.Google Scholar
  8. 8.
    M. Crochemore and W. Rytter. Text Algorithms. Oxford University Press, 1994.Google Scholar
  9. 9.
    Z. Ding and R.H. Güting. “Managing moving objects on dynamic transportation networks,” in Proc. Intl. Conf. on Scientific and Statistical Databases (SSDBM), 287–296, 2004.Google Scholar
  10. 10.
    N. Djafri, A. Fernandes, N.W. Paton, and T. Griffiths. ‘Spatio-temporal evolution: Querying patterns of change in spatio-temporal databases,” in Proc. Intl. Symp. on Geographic Information Systems, 35–41, 2002.Google Scholar
  11. 11.
    M. Dumas, M.-C. Fauvet, and P.-C. Scholl. “Handling temporal groupingand pattern-matching queries in a temporal object model,” in Proc. Intl. Conf. on Information and Knowledge Management, 424–431, 1998.Google Scholar
  12. 12.
    F. Fabret, H. Jacobsen, F. Llirba, K. Ross, and D. Shasha. “Filtering algorithms and implementations for very fast publish/subscrib systems,” in Proc. ACM SIGMOD Symp. on the Management of Data, 2001.Google Scholar
  13. 13.
    L. Forlizzi, R. Güting, E. Nardelli, and M. Schneider. “A data model and data structures for moving objects databases,” in Proc. ACM SIGMOD Symp. on the Management of Data, 2000.Google Scholar
  14. 14.
    D.Q. Goldin and P.C. Kanellakis. “On similarity queries for time-series data: Constraint specification and implementation,” in Proceedings of the 1st International Conference on Principles and Practice of Constraint Programming (CP'95), 1995.Google Scholar
  15. 15.
    S. Grumbach, P. Rigaux, and L. Segoufin. “Manipulating interpolated data is easier than you thought,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 2000.Google Scholar
  16. 16.
    S. Gupta, S. Kopparty, and C.V. Ravishankar. “Roads, codes and spatiotemporal queries,” in Proc. ACM Symp. on Principles of Database Systems, 115–124, 2004.Google Scholar
  17. 17.
    V. Guralnik and J. Srivastava. “Event detection from time series data,” in Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 33–42, 1999.Google Scholar
  18. 18.
    R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, M. Schneider, and M. Vazirgiannis. “A foundation for representing and quering moving objects,” ACM Transactions on Database Systems, Vol. 25(1):1–42, 2000.CrossRefGoogle Scholar
  19. 19.
    R.H. Güting, M.H. Böhlen, M. Erwig, C.S. Jensen, N.A. Lorentzos, E. Nardelli, M. Schneider, J.R.R. Viqueira (Eds.). Spatio-Temporal Models and Languages: An Approach Based on Data Types. Spatio-Temporal Databases. The CHOROCHRONOS Approach, 2003.Google Scholar
  20. 20.
    J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Boston, 1979.Google Scholar
  21. 21.
    G.S. Iwerks, H. Samet, and K. Smith. “Maintenance of spatial semijoin queries on moving points,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 828–839, 2004.Google Scholar
  22. 22.
    C.S. Jensen, D. Lin, and B.C. Ooi. “Query and update efficient B+-tree based indexing of moving objects,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 768–779, 2004.Google Scholar
  23. 23.
    D. Kalashnikov, S. Prabhakar, W. Aref, and S. Hambrusch. “Efficient evaluation of continuous range queries on moving objects,” in Proc. Intl. Conf. on Databases and Expert System Applications (DEXA), 731–740, 2002.Google Scholar
  24. 24.
    S.-W. Kim, J. Yoon, S. Park, and T.-H. Kim. “Shape-based retrieval of similar subsequences in time-series databases,” in Proceedings of the 17th Symposium on Proceedings of the 2002 ACM Symposium on Applied Computing, 438–445, 2002.Google Scholar
  25. 25.
    D. Knuth, J. Morris, and V. Pratt. “Fast pattern matching in strings,” SIAM Journal on Computing, Vol. 6(2):323–350, 1977.CrossRefGoogle Scholar
  26. 26.
    R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems, No. 37 in The A.P.I.C. Series, Academic Press: New York, 1992.Google Scholar
  27. 27.
    Y.-N. Law, H. Wang, and C. Zaniolo. “Query languages and data models for database sequences and data streams,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 492–503, 2004.Google Scholar
  28. 28.
    L. Liu, C. Pu, and W. Tang. “Continual queries for internet scale event-driven information delivery,” IEEE Transactions on Knowledge and Data Engineering, Vol. 11(4):610–628, 1999.CrossRefGoogle Scholar
  29. 29.
    G. Mecca and A.J. Bonner. “Finite query languages for sequence databases,” in Proc. Intl. Workshop on Database Programming Languages, 1995.Google Scholar
  30. 30.
    M.F. Mokbel, X. Xiong, and W.G. Aref. “SINA: Scalable incremental processing of continuous queries in spatio-temporal databases,” in Proc. ACM SIGMOD Symp. on the Management of Data, 2004a.Google Scholar
  31. 31.
    M.F. Mokbel, X. Xiong, W.G. Aref, S.E. Hambrusch, S. Prabhakar, and M.A. Hammad. “PLACE: A query processor for handling real-time spatiotemporal data streams,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 1377–1380, 2004b.Google Scholar
  32. 32.
    R. Ramakrishnan, D. Donjerkovic, A. Ranganathan, K.S. Beyer, and M. Krishnaprasad. “SRQL: Sorted relational query language,” in Proc. Intl. Conf. on Scientific and Statistical Databases (SSDBM), 84–95, 1998.Google Scholar
  33. 33.
    P. Rigaux, M. Scholl, and A. Voisard. Spatial Databases. Morgan Kaufmann, San Francisco, 2001.Google Scholar
  34. 34.
    R. Sadri, C. Zaniolo, A.M. Zarkesh, and J. Adibi. “Optimization of sequence queries in database systems,” in Proc. ACM Symp. on Principles of Database Systems, 2001a.Google Scholar
  35. 35.
    R. Sadri, C. Zaniolo, A.M. Zarkesh, and J. Adibi. “A sequential pattern query language for supporting instant data mining for e-services,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 2001b.Google Scholar
  36. 36.
    P. Seshadri, M. Livny, and R. Ramakrishnan. “SEQ: A model for sequence databases,” in Proc.IEEE Intl. Conf. on Data Engineering (ICDE), 232– 239, 1995.Google Scholar
  37. 37.
    A. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. “Modeling and querying moving objects,” in Proc. IEEE Intl. Conf. on Data Engineering (ICDE), 422–433, 1997.Google Scholar
  38. 38.
    A.P. Sistla, T. Hu, and V. Chowdhry. “Similarity based retrieval from sequence databases using automata as queries,” in Proc. Intl. Conf. on Information and Knowledge Management, 237–244, 2002.Google Scholar
  39. 39.
    J. Su, H. Xu, and O. Ibarra. “Moving objects: Logical relationships and queries,” in Proc. Intl. Conf. on Large Spatial Databases (SSD), 3–19, 2001.Google Scholar
  40. 40.
    J. Sun, D. Papadias, Y. Tao, and B. Liu. “Querying about the past, the present, and the future in spatio-temporal,” in Proc. IEEE Intl. Conf. on Data Engineering (ICDE), 202–213, 2004.Google Scholar
  41. 41.
    Y. Tao, D. Papadias, and Q. Shen. “Continuous nearest neighbor search,” in Proc. Intl. Conf. on Very Large Data Bases (VLDB), 287–298, 2002.Google Scholar
  42. 42.
    D. Terry, D. Goldberg, D. Nichols, and B. Oki. “Continuous queries over append-only databases,” in Proc. ACM SIGMOD Symp. on the Management of Data, 1992.Google Scholar
  43. 43.
    M. Vazirgiannis and O. Wolfson. “A spatiotemporal model and language for moving objects on road networks,” in Proc. Intl. Conf. on Large Spatial Databases (SSD), vol. 2121 of LNCS, 20–35, 2001.Google Scholar
  44. 44.
    O. Wolfson, A.P. Sistla, B. Xu, J. Zhou, and S. Chamberlain. “DOMINO: Databases for moving objects tracking,” in Proc. ACM SIGMOD Symp. on the Management of Data, 547–549, 1999 (Demo sessions).Google Scholar
  45. 45.
    X. Xiong, M.F. Mokbel, W.G. Aref, S.E. Hambrusch, and S. Prabhakar. “Scalable spatio-temporal continuous query processing for location-aware services,” in Proc. Intl. Conf. on Scientific and Statistical Databases (SSDBM), 317–326, 2004.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.CEDRIC lab.CNAMParis Cedex 03France
  2. 2.LAMSADE lab.Univ. Paris-DauphineParis cedex 16France

Personalised recommendations