Advertisement

Soil Improvement of Alluvial Deposits Under High-Speed Railway Embankment: Field Case Study

  • Ahmed Hamza MridakhEmail author
  • Fouad Lahlou
  • Houssine Ejjaaouani
  • Abdelaziz Mridekh
  • Hassan Labied
Original Paper
  • 17 Downloads

Abstract

This paper describes the performance of the Moroccan high-speed railway embankment over alluvial soft ground treated with prefabricated vertical drains. For analyzing soil behavior, numerical analyses were performed under 2D finite element Plaxis code. The authors undertook Class-B prediction at first, using two different constitutive models, soft soil and soft soil creep (SSC) models. Class-C prediction was then performed using only SSC. By comparing the predictions with field measurement, it was concluded that the time-dependent model (SSC) produced acceptable results . However, reasonable modification for the SSC model input parameters in Class-C prediction led to obtain accurate matches with field measurements.

Keywords

Alluvial deposits PVD Embankment FEM Constitutive models 

Notes

Acknowledgements

The work presented was supported by the LPEE (Laboratoire Public d’Essais et d’Etudes). The author would like to thank all personnel in the LPEE for providing all data necessary for the completion of this work. We also thank anonymous reviewers for their comments and suggestions.

References

  1. Aberkan M (1989) Etude des formations quaternaires des marges du bassin du Rharb (Maroc nord-occidental). Thèse de doctorat d’état. Université Bordeaux IGoogle Scholar
  2. Abuel Naga HM, Bergado DT, Gniel J (2015) Design chart for prefabricated vertical drains improved ground. Geotext Geomemb 43:537–546CrossRefGoogle Scholar
  3. Al Mazini I, Mridekh A, Kili M, El Mansouri B, El Bouhaddioui M, Magrane B (2018) Plio-quaternary deposits in the eastern rharb (nw morocco): Electro-sequential characterization. J Afr Earth Sc 138:32–41CrossRefGoogle Scholar
  4. Amavasai A, Sivasithamparam N, Dijkstra J, Karstunen M (2018) Consistent class A & C predictions of the Ballina test embankment. Comput Geotech 93:75–86CrossRefGoogle Scholar
  5. Chai JC, Shen SL, Miura N, Bergado DT (2001) Simple method of modeling PVD-improved subsoil. J Geotech Geoenviron Eng 127(11):965–972CrossRefGoogle Scholar
  6. Chai JC, Horpibulsuk S, Shen SL, Carter JP (2014) Consolidation analysis of clayey deposits under vacuum pressure with horizontal drains. Geotext Geomembr 42:437–444CrossRefGoogle Scholar
  7. Chen JF, Tolooiyam A, Xue JF, Shi ZM (2016) Performance of a geogrid reinforced soil wall on PVD drained multilayer soft soils. Geotext Geomemb 44(3):219–229CrossRefGoogle Scholar
  8. Cirac P (1985) Le bassin sud-rifain occidental au Néogène supérieur. Evolution de ladynamique sédimentaire et de la paléogéographie au cours d’une phase decomblement. Thèse de doctorat d’état. Université Bordeaux IGoogle Scholar
  9. Combe M (1975) Bassin du Gharb-Maâmora In ressources en eau du Maroc Tome 2. Notes et 501 mémoire du Service Géologique (Maroc) 231:93–128Google Scholar
  10. Da Silva EM, Juste JL, Durant P, Justo E, Vazquez Boza M (2017) The effect of geotextile reinforcement and prefabricated vertical drains on the stability and settlement of embankment. Geotext Geomemb 45:441–447CrossRefGoogle Scholar
  11. Di Filippo G, Bandini V, Cascone E, Biondi G (2017) Measurements and prediction of settlements induced by preloading and vertical drains on a heterogeneous soil deposit. Measurement 104:302–315CrossRefGoogle Scholar
  12. El Bouhaddioui M, Mridekh A, Kili M, El Mansouri B, EL Gasmi ElH, Magrane B (2014) Le Bassin du Rharb, Répartition des lithofaciés plio-quaternaires, contexte paléogéographique et géodynamique, contribution des diagraphies. Notes et Mém Serv Geol Maroc 577:125–137Google Scholar
  13. El Bouhaddioui M, Mridekh A, Kili M, El Mansouri B, El Gasmi EIH, Magrane B (2016) Electrical and well log study of the Plio-Quaternary deposits of the southern part of the Rharb Basin northern Morocco. J Afr Earth Sci 123:110–122CrossRefGoogle Scholar
  14. Flinch JF (1993) Tectonic Evolution of the Gibraltar Arc. Ph.D. thesis Rice University. Houston Texas USAGoogle Scholar
  15. Flinch JF, Vail PR (1998) Plio-pleistocene sequence and tectonics of the gibrator arc mesozoic and cenozoic sequence stratigraphiy of European Basin. SEMP Special Publ 60:119–208Google Scholar
  16. Hashemi H, Naeimifar I, Uromeihy A et al (2015) Evaluation of rock nail wall performance in jointed rock using numerical method. Geotech Geol Eng 33(3):593–607CrossRefGoogle Scholar
  17. Hosseinpour I, Almeida MSS, Riccio M, Baroni M (2017) Strength and compressibility characteristics of a soft clay subjected to ground treatment. Geotech Geol Eng 35(3):1051–1066CrossRefGoogle Scholar
  18. Indraratna B, Baral P, Rujikiatkamjorn C, Perera D (2018) Class A and predictions for Ballina trial embankment with vertical drains using standard test data from industry and large diameter test specimens. Comput Geotech 93:232–246CrossRefGoogle Scholar
  19. Jaaidi EB (1993) La couverture sédimentaire post-glacial de la plate forme continentale atlantique ouest-rifaine (Maroc Nord-Occidental). Exemple d’une séquence transgressive (Dsc thesis). Univ Mohammed V Faculté des sciences de RabatGoogle Scholar
  20. Jang WY, Chung SG (2014) Long term settlement analysis of partially improved thick clay deposit. Geotext Geomembr 42(6):620–628CrossRefGoogle Scholar
  21. Jiang QH, Qi ZF, Wei W, Zhou CB (2015) Stability assessment of a high rock slope by strength reduction finite element method. Bull Eng Geol Environ 74(4):1153–1162CrossRefGoogle Scholar
  22. Jostad HP, Palmeiri F, Andresen L et al (2018) Numerical prediction and back-calculation of time-dependent behavior of Ballina test embankment. Comput Geotech 93:123–132CrossRefGoogle Scholar
  23. Karunaratne GP (2011) Prefabricated and electrical vertical drains for consolidation of soft clay. Geotext Geomembr 29:391–401CrossRefGoogle Scholar
  24. Kelly RB, Sloan SW, Pineda JA, Kouretzis G, Huang J (2018) Outcomes of the newcastle symposium for the prediction of embankment behavior on soft soil. Comput Geotech 93:9–41CrossRefGoogle Scholar
  25. Khabbazian M, Kaliakin VN, Meehan CL (2015) Column supported embankments with geosynthetic encased columns: validity of the unit cell concept. Geotech Geol Eng 33(3):425–442CrossRefGoogle Scholar
  26. Kili M (2007) Les Aquifères profonds du bassin du Rharb (Maroc) Géométrie, Bilan et Modélisation. These d’état Es-Sciences. Université Ibn Tofail KenitraGoogle Scholar
  27. Krishnamoorthy A, Kamal S (2016) Stability of an embankment on soft consolidating soil with vertical drains. Geotech Geol Eng 34(2):657–669CrossRefGoogle Scholar
  28. Lam LG, Bergado DT, Hino T (2015) PVD improvement of soft Bangkok clay with and without vacuum preleading using analytical and numerical analyses. Geotext Geomembr 43:547–557CrossRefGoogle Scholar
  29. Lambe TW (1973) Predictions in soil engineering. Geotechnique 23:149–202CrossRefGoogle Scholar
  30. Larsson R (1990) Behaviour of organic clay and gyttja. Swedish Getechnical Institute. Linköping report no 38Google Scholar
  31. Larsson R, Sällfors G (1986) Automatic continuous consolidation testing in Sweden. In: Young RN, Townsend FC (eds) Consolidation of soils: testing and evaluation, ASTM STP 892. American Society for Testing and Materials, Philadelphia, pp 299–328CrossRefGoogle Scholar
  32. Le Coz J (1964) Le Rharb. Fellahs et colons. Etude de géographie régionale. Inframar 1. Rabat p 481Google Scholar
  33. Le Roy P, Sahabi M, Maad N, Rabineau M, Gutsher MA, Babonneau N, Van Vliet Lanoe B, Brahim LA, M’hammdi N, Trentesaux A, Dakki M, Hssain M (2014) 3D architecture of quaternary sediment along the NW Atlantic Moroccan Rharb continental shelf: a stratal pattern under the dual control of tectonics and climatic variations. Mar Pet Geol 49:129–142CrossRefGoogle Scholar
  34. Litto W, Jaaidi E, Medina F (2001) Etude sismo-structurale de la marge nord du bassin du Gharb (avant-pays rifain, Maroc): mise en évidence d’une distension d’âge miocène tardif. Eclogae Geol Helv 94:63–73Google Scholar
  35. Mesri G, Godlewski PM (1977) Time and stress-compressibility inter-relationship. J Geotech Eng 103(5):417–430Google Scholar
  36. Morel JL (1988) Evolution récente de l’orogène rifaine et de son avant-pays depuis la fin de la mise en place des nappes. Thèse d’Etat Paris. Mémoire Géo diffusion, p 584Google Scholar
  37. Neher HP, Wehnert M, Bonnier PG (2001) An evaluation of soft soil models based on trail embankment. In: Proceedings of 10th international conference on computer methods and advances in geomechanics. Tucson, pp 373–378Google Scholar
  38. Rezania M, Bagheri M, Nezhad MM, Sivasithamparam N (2017) Creep analysis of an earth embankment on soft soil deposit with and without PVD improvement. Geotext Geomemb 45:537–547CrossRefGoogle Scholar
  39. Shams Maleki Y, Khazaei J (2017) A numerical comparison of the behavior of a braced excavation using two and three-dimensional creep plastic analyses. Geotech Geol Eng 35(5):2017–2035CrossRefGoogle Scholar
  40. Šuklje L (1957) The analysis of the consolidation process by the isotaches method. In: Proceedings of the 4th international conference on soil mechanics and foundation engineering (London), pp 200–206Google Scholar
  41. Taechakumthorn C, Rowe RK (2012) Performance of a reinforced embankment on a sensitive Champlain clay deposit. Can Geotech J 49:917–927CrossRefGoogle Scholar
  42. Tavenas F, Leblond P, Jean P, Leroueil S (1983) The permeability of natural soft clays, part II: permeability characteristics. Can Gertech J 20(4):645–660CrossRefGoogle Scholar
  43. Toto EA, Miloudi AE, Basri ME, Hafid M, Zouhri L, Mouraouah SE, Benammi M, Mouraouah AE, Brahim AI, Birouk A, Kasmi M (2012) New geophysical and geological evidence for the present day southernmost active deformational from of the Rif thrust-and-fold belt and the oceanic accretionary prism of cadiz: the Dhar Doum-Lalla Zahra fault, Northwestern Atlantic Coastal Morocco. Environ Earth Sci 67:2411–2422CrossRefGoogle Scholar
  44. Tschuchnigg F, Schweiger HF (2018) Embankment prediction and back analysis by means of 2D and 3D finite element analyses. Comput Geotech 93:104–114CrossRefGoogle Scholar
  45. Vermeer PA, Neher HP (1999) A soft soil model that accounts for creep. Beyound 2000 in computational geotechnics. Ten years of Plaxis International Balkema. Amsterdam, pp 249–261Google Scholar
  46. Zhang Z, Ye GB, Xu Y (2018) Comparative analysis on performance of vertical drain improved clay deposit under vacuum or surcharge loading. Geotext Geomemb 46(2):146–154CrossRefGoogle Scholar
  47. Zouhri L, Lamoureux C, Vachard D, Pique A (2002) Evidence of flexural extension of the Rif foreland: the Rharb-Maâmora basin (northern Morocco). Bulletin de la Société Géologique de France 6:509–514CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ahmed Hamza Mridakh
    • 1
    Email author
  • Fouad Lahlou
    • 1
  • Houssine Ejjaaouani
    • 2
  • Abdelaziz Mridekh
    • 3
  • Hassan Labied
    • 2
  1. 1.Laboratoire de Génie énergétique et matériaux, Faculté des SciencesUniversité Ibn TofailKenitraMorocco
  2. 2.Laboratoire Public D’Essais et D’EtudesCasablancaMorocco
  3. 3.Laboratoire de Géosciences des Ressources Naturelles, Faculté des SciencesUniversité Ibn TofailKenitraMorocco

Personalised recommendations