Advertisement

Geotechnical and Geological Engineering

, Volume 37, Issue 1, pp 217–234 | Cite as

Correlation of California Bearing Ratio (CBR) Value with Soil Properties of Road Subgrade Soil

  • Valentine Yato KatteEmail author
  • Souleyman Moupe Mfoyet
  • Bertille Manefouet
  • Armand Sylvain Ludovic Wouatong
  • Lawrence Aleh Bezeng
Original Paper
  • 118 Downloads

Abstract

The California Bearing Ratio (CBR) is the most utilised parameter for dimensioning flexible pavements in tropical countries. Often this test is expensive, laborious and time consuming, and to overcome this, some regression analysis (single and multiple) was considered between the soil’s index properties (liquid limit-LL, Plastic limit-PL and Plasticity index-PI), compaction characteristics (maximum dry density-MDD and optimum moisture content-OMC), percentage of particle sizes (gravel, sand and clay/silt) and CBR. The study was carried out along an ongoing roadway construction project where thirty-three soil samples were collected and transported to the laboratory for analysis. Routine geotechnical tests were carried out and thereafter correlation and regression analysis were run on the obtained results to assess the relationship between these index properties, compaction characteristics and the experimental CBR obtained. The results of this analysis showed relatively fair coefficients of determination of R2 = 0.772 between CBR and MDD using single linear regression analysis and R2 = 0.841 between CBR and all the parameters using multiple linear regression analysis (MLRA). Though the MLRA improved the R2 from 0.772 to 0.841, the inclusion of additional properties results in a marginal increase of R2 indicative of weak correlators of CBR hence practically not cost effective for pavement design .

Keywords

CBR Flexible pavement Soil index properties Compaction characteristics Percentage of particle sizes SLRA MLRA Pearson’s coefficient R2 Cost effective 

References

  1. Agarwal KB, Ghanekar KD (1970) Prediction of CBR from plasticity characteristics of soil. In: Proceeding of 2nd south-east Asian conference on soil engineering, Singapore, pp 11–15Google Scholar
  2. Bessoles B, Trompette R (1980) Géologie de l’Afrique: La Chaine Pan-Africaine, Zone mobile d’Afrique Centrale (partie Sud) et zone Soudanaise. Mémoire BRGMGoogle Scholar
  3. Bitom D, Tamfuh PA, Mamdem L, Zame PZ (2013) Influence of Altitude on the petrological features of a soil climosequence in the humid tropical zone of Cameroon. Open Geol J 7:14–30CrossRefGoogle Scholar
  4. BS 1377 (1990) Methods of testing soils for civil engineering purposes. british standard institution. LondonGoogle Scholar
  5. Cahen L, Delhal H, Lavreau J (1976) The archaean of equatorial Africa. Wiley, New YorkGoogle Scholar
  6. Clifford TN, Gass IG (1970) African magmatism and tectonics. EdinburghGoogle Scholar
  7. De Graft-Johnson JWS, Bhatia HS (1969) The engineering characteristics of the lateritic gravels of ghana. In: Proceedings of 7th international conference on soil mechanics and foundation engineering, Mexico, August 28–29, vol 2. Asian Institute of Technology, Bangkok, pp 13–43Google Scholar
  8. Eno Belinga SM (1983) External dynamic geology of tropical countries of the earth. iron landscapes. University Library, YaoundéGoogle Scholar
  9. Goodwin AM (1991) The dynamic evolution of the continental crust. Harcourt Brace Jovanovich Publishers, CaliforniaGoogle Scholar
  10. Gregory GH, Cross SA (2007) Correlation of CBR with shear strength parameters. In: Proceedings of 9th international conference on low volume roads, Austin, TexasGoogle Scholar
  11. Kornprobst J, Lasserre M, Rollet M, Soba D (1976) Existence au Cameroun d’un magmatisme alcalin Pan-Africain ou plus ancien: la syénite néphélinique de Nkonglong. Comparaison avec les roches alcalines connues dans la méme région. Bulletin Société Géologique de France, 18 (5, tome XVIII), 1295–1305Google Scholar
  12. Lasserre M, Soba D (1976) Age Libérien des granodiorites et des gneiss a pyroxénes du Cameroun Méridional. Bulletin BRGM 2(4):17–32Google Scholar
  13. Maurizot P, Abessolo A, Feybesse JL, Johan LP (1985) Etude de prospection miniere du Sud-Ouest Cameroun. In: Brgm RD (ed) Synthese des travaux de 1978 a 1985Google Scholar
  14. Nédélec A (1990) Late calcalkaline plutonism in the Archaean Ntem unit: the Sangmelima granodioritic suite (South Cameroon). 15th colloquium on African geology, CIFEG 22, pp 25–28Google Scholar
  15. Nsifa EN, Riou R (1990) Post Archaean migmatization in the charnockitic series of the Ntem complex, Congo craton, southern Cameroun. 15th colloquium on African geology, CIFEG 22, pp 33–36Google Scholar
  16. Nsifa EN, Tchameni R, Belinga SME (1993) De l’existence de formation catarchéennes dans le complexe cratonique du Ntem (Sud-Cameroun). In: Volume A (ed) Archaean cratonic rocks of AfricaGoogle Scholar
  17. Patel RS, Desai MD (2010) CBR predicted by index properties for alluvial soils of South Gujarat. In: Proceedings of the Indian geotechnical conference, Mumbai, pp 79–82Google Scholar
  18. Rocci G (1965) Essai d’interprétation des mesures géochronologiques. La structure de l’Ouest Africain. Science de la Terre France 10:461–479Google Scholar
  19. Satyanarayana Reddy CNV, Pavani K (2006) Mechanically stabilised soils-regression equation for CBR evaluation. In: Proceedings of the Indian geotechnical conference, Chennai, India, pp 731–734Google Scholar
  20. Segalen P (1967) Soils and geomorphology of Cameroon. Cah Orstom (Sér Pédol) 5:137–187Google Scholar
  21. Shang CK (2001) Geology, geochemistry and geochronology of archaean rocks from the Sangmelima Region, Ntem complex, NW Congo craton, South Cameroon. Ph.D. thesis, University of TubingenGoogle Scholar
  22. Shang CK, Satir M, Siebel W, Taubald H, Nsifa EN, Westphal M, Reitter E (2001a) Genesis of K-rich granitoids in the Sangmelima region, Ntem complex (Congo craton) Cameroon. Terra Nostra 5(2001):60–63Google Scholar
  23. Shang CK, Taubald H, Satir M, Siebel W, Nsifa EN, Vennemann T, Njilah IK, Ghogomu R (2001b) Evidence fora non-cogenetic relationship between monzogranites and TTG suite. Strasbourg, FranceGoogle Scholar
  24. Suchel JB (1972) Rainfall distribution and rainfall regimes in Cameroon. CEGET, TalenceGoogle Scholar
  25. Tchameni R (1997) Géochimie et géochronologie des formations de l’Archéen et du Paléoprotérozoique du Sud-Cameroun (Groupe du Ntem, Craton du Congo). Thése, Univérsité d’OrléansGoogle Scholar
  26. Tchameni R, Mezger K, Nsifa NE, Pouclet A (2000) Neoarchaean evolution in the Congo craton: evidence from K rich granitoids of the Ntem complex, Southern Cameroon. J Afr Earth Sci 30:133–147CrossRefGoogle Scholar
  27. Tchameni R, Mezger K, Nsifa NE, Pouclet A (2001) Crustalorigin of early proterozoic syenites in the Congo craton (Ntem complex), South Cameroon. Lithos 57:23–42CrossRefGoogle Scholar
  28. Toteu SM, Van Schmus WR, Penaye J, Nyobe JB (1994) U-Pb and Sm–Nd evidence for Eburnean and Pan-African high grade metamorphism in cratonic rocks of southern Cameroon. Precambr Res 67:321–347CrossRefGoogle Scholar
  29. Vicat JP, Leger JM, Nsifa E, Piguet P, Nzenti JP, Tchameni R, Pouclet A (1996) Distinction au sein du craton congolais du Sud-Ouest du Cameroun, de deux épisodes doléritiques initiant les cycles orogéniques éburnéen (Paléoprotérozoique) et Pan-Africain (Néoprotérozoique). série IIa 323, 575–582Google Scholar
  30. Vinod P, Reena C (2008) Prediction of CBR value of lateritic soils using liquid limit and gradation characteristics data. Highw Res J IRC 1(1):89–98Google Scholar
  31. Yildirim B, Gunaydin O (2011) Estimation of California bearing ratio by using soft computing systems. Expert Syst Appl 38(5):6381–6391CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil Engineering and Forestry Techniques, HTTTCThe University of BamendaBambiliCameroon
  2. 2.Department of Earth Sciences, Faculty of ScienceUniversity of DschangDschangCameroon
  3. 3.Bela Company LTD.BamendaCameroon

Personalised recommendations