Advertisement

Geotechnical and Geological Engineering

, Volume 36, Issue 6, pp 3831–3856 | Cite as

Evaluation of the Compressibility and Compressive Strength of a Compacted Cement Treated Laterite Soil for Road Application

  • Emmanuel MengueEmail author
  • Hussein Mroueh
  • Laurent Lancelot
  • Robert Medjo Eko
Original Paper
  • 105 Downloads

Abstract

This study presents experimental results of a laboratory investigation carried out on the compressibility, physical properties, compressive strength and microstructure of a cement–lateritic soil mixing. The investigation was conducted on a compacted fine grained lateritic soil, both untreated and treated with CEMII/BM 32.5 N cement (up to 9% by weight of dry soil), in order to evaluate the effect of cement content and curing time on the behavior of lateritic soil–cement mixtures compacted at modified proctor energy for various dry densities and molding water contents. Preliminary tests on cement amended soil showed improved physical properties. The unconfined compression tests show an increase of the unconfined compressive strength, reflecting an improvement of mechanical strength of the treated lateritic soil. The incremental oedometer tests showed that yield stress (σ′y) increased with both cement content and curing time, but decreased with increased molding water content. Reduction in modified compression index (C) and modified recompression index (C) with increasing cement content and curing time was recorded for all tested water contents, the coefficient of consolidation (Cv) is increased for effective vertical stresses smaller than the yield stress. The results also show that it would be desirable that the soil sample is prepared at the dry side of optimum (ωDRY) when the optimum moisture content is not reached on the site. These positive impacts are mainly related to the fact that cement addition gives way to the formation of ettringite, calcite, portlandite and calcium silicate hydrates (afwillite and tobermorite) which derived principally from cement hydration.

Keywords

Lateritic soil Soil–cement mixes Unconfined compressive strength Compressibility characteristics Physicochemical properties 

Notes

Acknowledgements

The authors would like to thank the MUNDUS ACP 2 Project for funding this research. Our thanks also go to the place of the host laboratory, the LGCGE where almost all of these works are carried.

References

  1. Al-Amoudi OSB (2002) Characterization and chemical stabilization of Al-Qurayyah sabkha soil. J Mater Civ Eng 14(6):478–484CrossRefGoogle Scholar
  2. Al-Amoudi OSB, Khan K, Al-Kahtani NS (2010) Stabilization of a Saudi calcareous marl soil. Constr Build Mater 24(10):1848–1854CrossRefGoogle Scholar
  3. Bagarre E (1990) Utilisation des graveleux latéritiques en technique routière. Rev. ISTED – CEBTP, 148Google Scholar
  4. CEBTP (1984) Guide pratique de dimensionnement des chaussées pour les pays tropicaux p 157Google Scholar
  5. Chew SH, Kamruzzaman AHM, Lee FH (2004) Physicochemical and engineering behavior of cement treated clays. J Geotech Geoenviron Eng 130(7):696–706CrossRefGoogle Scholar
  6. Eberemu AO (2011) Consolidation properties of compacted lateritic soil treated with rice husk ash. J Geomat (GM) 1(3):70–78CrossRefGoogle Scholar
  7. Feng TW, Lee JY, Lee YJ (2001) Consolidation behavior of a soft mud treated with small cement content. Eng Geol 59(3):327–335CrossRefGoogle Scholar
  8. Gidigasu M (ed) (2012) Laterite soil engineering: pedogenesis and engineering principles, vol 9. Elsevier, AmsterdamGoogle Scholar
  9. GTR (2000) Guide des Terrassements Routiers, réalisation de remblais et des couches de formes, fascicules I et II, GTR SETRA-LCPC 2ème édition Juillet 2000, p 211Google Scholar
  10. Holtz RD, Kovacs WD (1981) Introduction à la géotechnique. Editions de l’Ecole Polytechnique de MontréalGoogle Scholar
  11. Hwang J (2006) Effects of cement treatment on the one-dimensional consolidation behavior of a highly organic soil. ProQuest p 458Google Scholar
  12. Kamruzzaman AH, Chew SH, Lee FH (2009) Structuration and destructuration behavior of cement-treated Singapore marine clay. J Geotech Geoenviron Eng ASCE 135(4):573–589CrossRefGoogle Scholar
  13. Kazemian S, Huat BB (2009) Compressibility characteristics of fibrous tropical peat reinforced with cement column. Electron J Geotech Eng 14:1–13Google Scholar
  14. Lemaire K, Deneele D, Bonnet S, Legret M (2013) Effects of lime and cement treatment on the physicochemical, microstructural and mechanical characteristics of a plastic silt. Eng Geol 166:255–261CrossRefGoogle Scholar
  15. Locat J, Berube MA, Choquette M (1990) Laboratory investigations on the lime stabilization of sensitive clays: shear strength development. Can Geotech J 27(3):294–304CrossRefGoogle Scholar
  16. Lorenzo GA, Bergado DT (2004) Fundamental parameters of cement-admixed clay-new approach. J Geotech Geoenviron Eng 130(10):1042–1050CrossRefGoogle Scholar
  17. Magnan JP, Mieussens C, Soyez B, Vautrain J (1985) Essais oedométriques. Laboratoire central des Ponts et Chaussées. Paris. Méthode d’essai LPC, 13, p 83Google Scholar
  18. Mengue E (2015) Évaluation du comportement mécanique d’un sol latéritique traité au ciment pour des applications routières (Doctoral dissertation, Lille 1)Google Scholar
  19. Mengue E, Mroueh H, Lancelot L, Medjo Eko R (2015) One-dimensional consolidation behavior of cement treated lateritic soil. Proceedings of the XVI ECSMGE Geotechnical Engineering for Infrastructure and Development. ISBN 978-0-7277-6067-8Google Scholar
  20. Mengue E, Mroueh H, Lancelot L, Eko RM (2017) Mechanical improvement of a fine-grained lateritic soil treated with cement for use in road construction. J Mater Civ Eng 29(11):04017206CrossRefGoogle Scholar
  21. Millogo Y, Hajjaji M, Ouedraogo R, Gomina M (2008) Cement-lateritic gravels mixtures: microstructure and strength characteristics. Constr Build Mater 22(10):2078–2086CrossRefGoogle Scholar
  22. Mrabent B, Amel S, Hachichi A, Bengraal L, Fleureau JM (2011) Influence du ciment sur le gonflement et la microstructure d’une argile naturelle d’Algérie. XXIXe Rencontres Universitaires de Génie Civil, Tlemcen, 29 au 31 Mai 2011Google Scholar
  23. NF EN 13286-41 (2003) Mélanges traités et mélanges non traités aux liants hydrauliques - Partie 41: méthode d’essai pour la détermination de la résistance à la compression des mélanges traités aux liants hydrauliques. Juillet 2003Google Scholar
  24. NF P94-051 (1993) Sols : reconnaissance et essais - Détermination des limites d’Atterberg - Limite de liquidité à la coupelle - Limite de plasticité au rouleau. Mars 1993Google Scholar
  25. NF P94-090-1 (1993) Sols: Reconnaissance et Essais - Essai œdométrique - Partie 1: Essai de compressibilité sur matériaux fins quasi saturés avec chargement par paliers. Décembre 1993Google Scholar
  26. NF P94-068 (1998) Sols: reconnaissance et essais - Mesure de la capacité d’adsorption de bleu de méthylène d’un sol ou d’un matériau rocheux - Détermination de la valeur de bleu de méthylène d’un sol ou d’un matériau rocheux par l’essai à la tache. Octobre (1998)Google Scholar
  27. NF P94-093 (1999) Sols : reconnaissance et essais - Détermination des références de compactage d’un matériau - Essai Proctor Normal - Essai Proctor modifié - Sols: reconnaissance et essais - Détermination des références de compactage d’un matériau - Essai Proctor Normal - Essai Proctor modifié. Octobre 1999Google Scholar
  28. Osinubi KJ (1998) Permeability of lime-treated lateritic soil. J Transp Eng 124(5):465–469CrossRefGoogle Scholar
  29. Oyediran IA, Kalejaiye M (2011) Effect of increasing cement content on strength and compaction parameters of some lateritic soils from southwestern Nigeria. Electron J Geotech Eng 16:1501–1514Google Scholar
  30. Sarkar G, Islam MDR, Alamgir M, Rokonuzzaman MD (2012) Study on the geotechnical properties of cement based composite fine-grained soil. Int J Adv Struct Geotech Eng 1(2):42–49Google Scholar
  31. Sikali et F, Mir-Emarati DJ (1987) Utilisation des latérites en technique routière au Cameroun. In Séminaire régional sur les latérites: sols, matériaux, minerais pp 277–288Google Scholar
  32. Sobhan K, Ramirez JC, Reddy DV (2012) Cement stabilization of highly organic subgrade soils to control secondary compression settlement. Transp Res Rec J Transp Res Board 2310(1):103–112CrossRefGoogle Scholar
  33. Solanski CH, Desai MD (2008) Preconsolidation pressure from soil index and plasticity properties. In: The 12th international conference of international association for computer methods and advances in geomechanics (IACMAG) 1–6 October, Goa, IndiaGoogle Scholar
  34. Tremblay H, Leroueil S, Locat J (2001) Mechanical improvement and vertical yield stress prediction of clayey soils from eastern Canada treated with lime or cement. Can Geotech J 38(3):567–579CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emmanuel Mengue
    • 1
    • 2
    Email author
  • Hussein Mroueh
    • 1
  • Laurent Lancelot
    • 1
  • Robert Medjo Eko
    • 2
  1. 1.Laboratory of Civil Engineering and geo-Environment (LGCgE) - Polytech’LilleUniversity Lille 1 Sciences and TechnologiesVilleneuve d’AscqFrance
  2. 2.Laboratory of Engineering Geology, Department of Earth Sciences, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon

Personalised recommendations