Advertisement

Coupled Thermo-mechanical Behavior of Weakening Geo-Materials

  • Nesrine Gabssi
  • Essaieb Hamdi
  • Ali Karrech
Original Paper
  • 42 Downloads

Abstract

In this paper, the overall effective thermo-mechanical properties of limestone samples are estimated using a micro–macro mechanical approach. A mathematical framework is proposed to estimate the overall properties based on local geometrical considerations using Mori–Tanaka’s scheme. In addition, a homogenization-based mathematical formulation is proposed to predict the effective thermal conductivity of composite materials subjected to periodic micro-scale heat fluxes and governed by Fourier’s law and steady state balance equations. Moreover, Coussy’s approach is used to derive the expression of heat capacity. In order to take into account the degradation of heterogeneous rock materials, a damage based numerical model that uses the homogenized thermo-mechanical properties and Griffith’s criterion is proposed. The model is implemented as an external user material subroutine to the multi-purpose finite element software Abaqus, to assess the damage of a limestone rock sample under normal percussion drilling conditions. Moreover, a model parameter identification procedure is performed to calibrate the necessary parameters using a simple indentation test. The obtained results show that the numerical model can reproduce the elastic damaged behavior of rocks, such as limestone, subjected to a simple indentation that mimic the conditions of rock drilling. Finally, the proposed analysis proves that effect of temperature on the overall behavior of limestone can be investigated using multi-physics upscaling.

Keywords

Thermo-mechanical Damage Temperature Rock Limestone Confining pressure Griffith criterion 

Notes

References

  1. Aboudi J (1991) Mechanics of composite materials: a unified micromechanical approach, vol 93. Elsevier, AmsterdamGoogle Scholar
  2. Asef MR, Najibi AR (2013) The effect of confining pressure on elastic wave velocities and dynamic to static Young’s modulus ratio. Geophysics 78(3):D135–D142.  https://doi.org/10.1190/geo2012-0279.1 CrossRefGoogle Scholar
  3. Benveniste Y (1987) A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6:147–157CrossRefGoogle Scholar
  4. Bornert M, Brethau T, Gilormini P (2001) Homogénéisation En Mécanique Des Matériaux 1: Matériaux Aléatoires Elastiques Et Milieux Périodiques. Hermes Science Publications, ParisGoogle Scholar
  5. Budiansky B (1983) Micromechanics. Comput Struct 16(1–4):3–12CrossRefGoogle Scholar
  6. Chen L, Wang C, Liu J, Liu Y, Liu J, Su R, Wang J (2014) A damage-mechanism based creep model considering temperature effect in granite. Mech Res Commun 56:76–82CrossRefGoogle Scholar
  7. Christensen RM, Lo KH (1979) Solutions for effective shear properties in three phase sphere and cylinder models. J Mech Phys Solids 27(4):315–330.  https://doi.org/10.1016/0022-5096(79)90032-2.CrossRefGoogle Scholar
  8. Coussy O (2004) Poromechanics. Wiley, ChichesterGoogle Scholar
  9. Detournay E, Huang H, Fairhurst C (1998) Normal wedge indentation of rocks by a wedge-shaped tool I: theoretical model. Int J Rock Mech Min Sci Geomech Abstr (submitted)Google Scholar
  10. Dormieux L, Kondo D, Ulm F (2006) Microp oromechanics, 1st edn. Wiley, ChichesterCrossRefGoogle Scholar
  11. Eshelby J (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A Math Phys Sci 241(1226):376–396CrossRefGoogle Scholar
  12. Gabssi N, Karrech A, Hamdi E (2017) A micromechanical approach for anisotropic rock mass thermo-mechanical properties estimation. Procedia Eng 191:369–377CrossRefGoogle Scholar
  13. Gabssi N, Souissi S, Hamdi E, Karrech A (2018) Micro-mechanical damage model for geomaterials behavior under indentation. In: TuniRock, Tunisia, DDM, pp 157–162Google Scholar
  14. Gaede O, Karrech A, Regenauer-Lieb K (2013) Anisotropic damage mechanics as a novel approach to improve pre- and post-failure borehole stability analysis. Geophys J Int 193(3):1095–1109.  https://doi.org/10.1093/gji/ggt045 CrossRefGoogle Scholar
  15. Hamdi E, Romdhane NB, Le Cléac’h JM (2011) A tensile damage model for rocks: application to blast induced damage assessment. Comput Geotech 38(2):133–141.  https://doi.org/10.1016/j.compgeo.2010.10.009 CrossRefGoogle Scholar
  16. Hashin Z, Shtrikman S (1962a) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352CrossRefGoogle Scholar
  17. Hashin Z, Shtrikman S (1962b) On some variational principles in anisotropic and nonhomogeneous elasticity. J Mech Phys Solids 10(42):335–342CrossRefGoogle Scholar
  18. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(42):127–140CrossRefGoogle Scholar
  19. Hill R (1952) The elastic behavior of a crystalline aggregate. Proc Phys Soc Lond 65A:349–354CrossRefGoogle Scholar
  20. Hill R (1965) Self-cconsistent mechanics of composite materials. J Mech Phys Solids 13:213–222CrossRefGoogle Scholar
  21. Huang H, Damjanac B, Detournay E (1998) Normal wedge indentation in rocks with lateral confinement. Rock Mech Rock Eng 31(2):81–94CrossRefGoogle Scholar
  22. Huengens E (1988) Thermal properties of rocks and. Technical report, Reston, VirginiaGoogle Scholar
  23. Ihara I (2008) Ultrasonic sensing: fundamentals and its applications to nondestructive evaluation. In: Mukhopadhyay S, Huang R (eds) Sensors. Lecture notes electrical engineering, vol 21. Springer, BerlinCrossRefGoogle Scholar
  24. Karrech A (2013) Non-equilibrium thermodynamics for fully coupled thermal hydraulic mechanical chemical processes. J Mech Phys Solids 61(3):819–837.  https://doi.org/10.1016/j.jmps.2012.10.015 CrossRefGoogle Scholar
  25. Karrech A, Schrank C, Freij-Ayoub R, Regenauer-Lieb K (2014) A multi-scaling approach to predict hydraulic damage of poromaterials. Int J Mech Sci 78:1–7.  https://doi.org/10.1016/j.ijmecsci.2013.10.010 CrossRefGoogle Scholar
  26. Karrech A, Abbassi F, Basarir H, Attar M (2017) Self-consistent fractal damage of natural geo-materials in finite strain. Mech Mater 104:107–120CrossRefGoogle Scholar
  27. Lemaitre J (1996) A course on damage mechanics.  https://doi.org/10.1007/978-3-642-18255-6_4
  28. Liu H, Kou S, Lindqvist P, Tang C (2002) Numerical simulation of the rock fragmentation process induced by indenters. Int J Rock Mech Min Sci 39:491–505CrossRefGoogle Scholar
  29. Liu J, Karrech A, Regenauer-Lieb K (2014) Combined mechanical and melting damage model for geomaterials. Geophys J Int 198(3):1319–1328.  https://doi.org/10.1093/gji/ggu200 CrossRefGoogle Scholar
  30. Mao X, Zhang L, Li T, Liu H (2009) Properties of failure mode and thermal damage for limestone at high temperature. Min Sci Technol 19(3):290–294Google Scholar
  31. Motiand T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574CrossRefGoogle Scholar
  32. Peters M, Veveakis M, Poulet T, Karrech A, Herwegh M, Regenauer-Lieb K (2015) Boudinage as a material instability of elasto–visco-plastic rocks. J Struct Geol 78:86–102.  https://doi.org/10.1016/j.jsg.2015.06.005 CrossRefGoogle Scholar
  33. Poulet T, Karrech A, Regenauer-Lieb K, Fisher L, Schaubs P (2012) Thermal–hydraulic–mechanical–chemical coupling with damage mechanics using escriptrt and abaqus. Tectonophysics 526–529:124–132.  https://doi.org/10.1016/j.tecto.2011.12.005 CrossRefGoogle Scholar
  34. Punturo R, Kern H, Cirrincione R, Mazzoleni P, Pezzino A (2005) P- and S-wave velocities and densities in silicate and calcite rocks from the Peloritani Mountains, Sicily (Italy): the effect of pressure, temperature and the direction of wave propagation. Tectonophysics 409(1–4):55–72.  https://doi.org/10.1016/j.tecto.2005.08.006 CrossRefGoogle Scholar
  35. Rosenholtz JL, Smith DT (1949) Linear thermal expansion of calcite, var. Iceland spar, and Yule Marble. Am Miner 34:846–854. http://www.minsocam.org/ammin/AM34/AM34_846.pdf
  36. Schmidt R, Huddle C (1977) Effect of confining pressure on fracture toughness of Indiana limestone. Int J Rock Mech Min Sci Geomech Abstr 14(5–6):289–293.  https://doi.org/10.1016/0148-9062(77)90740-9 CrossRefGoogle Scholar
  37. Schrank C, Fusseis F, Karrech A, Regenauer-Lieb K (2012) Thermal-elastic stresses and the criticality of the continental crust. Geochem Geophys Geosyst 13:Q09005.  https://doi.org/10.1029/2012gc004085 CrossRefGoogle Scholar
  38. Somerton W (1992) Heat capacities of rocks. Dev Pet Sci 37(100):8–21.  https://doi.org/10.1016/S0376-7361(09)70022-6 Google Scholar
  39. Souissi S, Hamdi E, Sellami H (2015) Microstructure effect on hard rock damage and fracture during indentation process. Geotech Geol Eng 33(6):1539–1550.  https://doi.org/10.1007/s10706-015-9920-6 CrossRefGoogle Scholar
  40. Souissi S, Miled K, Hamdi E, Hedi S (2017) Numerical modelling of rocks damage during indentation process with reference to hard rock drilling. Int J Geomech.  https://doi.org/10.1061/(ASCE)GM.1943-5622.0000862 Google Scholar
  41. Steif PS (1984) Crack extension under compressive loading. Eng Fract Mech 20(3):463–473CrossRefGoogle Scholar
  42. Wang X, Wang QF, Pei Y, Okan L, Lin S (2018) Dominant cutting parameters affecting the specific energy of selected sandstones when using conical picks and the development of empirical prediction models. Rock Mech Rock Eng 51(10):3111–3128.  https://doi.org/10.1007/s00603-018-1522-1 CrossRefGoogle Scholar
  43. Wawersik WR, Brace WF (1971) Post-failure behavior of a granite and diabase. Rock Mech 3(2):61–85.  https://doi.org/10.1007/BF01239627 CrossRefGoogle Scholar
  44. Wong TF (1982) Micromechanics of faulting in westerly granite. Int J Rock Mech Min Sci Geomech Abstr 19(2):49–64CrossRefGoogle Scholar
  45. Zaoui A (1998) Matériaux Hétérogènes Et Composites. FranceGoogle Scholar
  46. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128:808–816CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.LR14ES03 Laboratoire d’Ingénierie Géotechnique, Ecole Nationale d’Ingénieurs de TunisTunisTunisia
  2. 2.School of EngineeringThe University of Western AustraliaCrawleyAustralia

Personalised recommendations