Advertisement

Geotechnical and Geological Engineering

, Volume 35, Issue 4, pp 1421–1438 | Cite as

Experimental and numerical evaluation of single-layer covers placed on acid-generating tailings

  • Thomas PabstEmail author
  • Michel Aubertin
  • Bruno Bussière
  • John Molson
Original paper

Abstract

This study focuses on the reclamation work being performed on two former acid-generating tailings sites, located in Quebec, Canada. At both sites, the tailings were partially oxidized due to extended exposure, and the pore water is acidic. The reclamation solution applied to control acid mine drainage is a monolayer cover, made of non acid-generating tailings in one case and a till in the other. The goal of this project was to assess the response of the tailings-cover systems under various conditions. Tailings samples were collected in situ and characterized in the laboratory. Large column tests were conducted to evaluate the hydrogeological and geochemical behaviour of the covered tailings following wetting and drying cycles. The instrumented columns were designed to reproduce some of the existing site conditions and provide representative results for longer term analyses. Volumetric water content, suction, and oxygen concentrations were also monitored over time. The experimental data were used to validate different numerical models including those constructed with Vadose/W (GeoSlope Int.). Additional simulations were conducted under field conditions to evaluate the effect of various influence factors such as the depth of the water table, climatic conditions and the thickness of the cover. The combination of experimental and numerical results show how the behaviour and efficiency of a monolayer cover placed over reactive tailings depend on these factors, highlighting the importance of hydrogeological properties and water table depth. In many instances, the cover materials were prone to desaturation, especially when the water table was deeper than about 2 m below the tailings-cover interface. These results tend to indicate that relatively thin monolayer covers would not be able to prevent oxygen ingress under some of the conditions observed in the field. Desaturation of the cover and/or reactive tailings is due to a combination of drainage and evaporation. In such cases, increasing the thickness of the monolayer cover only has a limited effect. A discussion follows on the practical implications of these laboratory experiments and the numerical simulations for field design of reclamation measures at these two tailings impoundments.

Keywords

Acid-generating tailings Monolayer cover Column tests Elevated water table Hydrogeological simulations 

Notes

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the partners of the Industrial NSERC Polytechnique-UQAT Chair in Environment and Mine Wastes Management (2001–2012). Additional support is also provided by the FRQNT and the partners of the Research Institute on Mines and Environment (www.rime-irme.ca/en).

References

  1. Aachib M, Aubertin M, Chapuis RP (1994) Column tests investigation of milling wastes properties used to build cover systems. In: Proceedings of the international land reclamation and mine drainage conference and 3rd international conference on the abatement of acidic drainage, Vol 2. Pittsburgh, Pennsylvania, p 128–137Google Scholar
  2. Aachib M, Aubertin M, Chapuis RP (1998) Etude en laboratoire de la performance d’un système de recouvrement multicouche sur des rejets miniers. Compte-rendu de symposium, Réunion générale annuelle. Institu canadien des mines, de la métallurgie et du pétrole, Montréal, Qc, 8pGoogle Scholar
  3. Aachib M, Mbonimpa M, Aubertin M (2004) Measurement and prediction of the oxygen diffusion coefficient in the unsaturated media, with applications to soil covers. Water Air Soil Pollut 156:163–193CrossRefGoogle Scholar
  4. ASTM D5084-90 (1997) Standard test method for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM InternationalGoogle Scholar
  5. ASTM D3152-72 (2000) Standard test method for capillary moisture relationships for fine-textured soils by pressure membrane apparatus (Withdrawn (2007)). ASTM InternationalGoogle Scholar
  6. Aubertin M, Chapuis RP, Aachib M, Ricard JF, Tremblay L, Bussière B (1994) Cover technology for acidic tailings: hydrogeological properties of milling wastes used as capillary barrier. In: 1st int. cong. environmental geotechnics, Edmonton, p 427–432Google Scholar
  7. Aubertin M, Chapuis RP, Aachib M, Bussière B, Ricard JF, Tremblay L (1995) Evaluation en laboratoire de barrières sèches construites à partir de résidus miniers. Ecole Polytechnique de Montréal, NEDEM/MEND Projet 2.22.2aGoogle Scholar
  8. Aubertin M, Bussière B, Monzon M, Joanes AM, Gagnon D, Barbera JM, Aachib M, Bédard C, Chapuis RP, Bernier L (1999) Etude sur les barrières sèches construites à partir des résidus miniers. Phase II, Essais en place. Rapport de Recherche, Projet CDT P1899. NEDEM/MEND 2.22.2cGoogle Scholar
  9. Aubertin M, Bussière B, Bernier L (2002) Environnement et Gestion des Rejets Miniers. Presses Polytechnique Int., Montreal, Qc, CanadaGoogle Scholar
  10. Aubertin M, Mbonimpa M, Bussière B, Chapuis RP (2003) A model to predict the water retention curve from basic geotechnical properties. Can Geotech J 40(6):1104–1122CrossRefGoogle Scholar
  11. Aubertin M, Molson J, Bussière B, Dagenais AM (2006) Investigations of layered cover systems acting as oxygen barriers to limit acid mine drainage. In: Thomas HR (ed) 5th ICEG environmental geotechnics: opportunities, challenges and responsibilities for environmental geotechnics, Vol 2. Thomas Telford, Cardiff, p 827–835, 26–30 June 2006Google Scholar
  12. Aubertin M, Bussière B, Zagury G (2011) La gestion des rejets miniers au Québec, L’État du Québec 2011. Institut du Nouveau Monde, Boréal, pp 225–232Google Scholar
  13. Aubertin M, Pabst T, Bussière B, James M (2015) Revue des meilleures pratiques de restauration des sites d’entreposage de rejets miniers générateurs de DMA. In: Symposium 2015 sur l’environnement et les mines, Rouyn-Noranda, p 67Google Scholar
  14. Aubertin M, Bussière B, Pabst T, James M, Mbonimpa M (2016) Review of reclamation techniques for acid generating mine wastes upon closure of disposal sites. In: Proc. geo-chicago: sustainability, energy and the geoenvironment, Chicago, 14–18 AugGoogle Scholar
  15. Awoh AS, Mbonimpa M, Bussière B (2013) Field study of the chemical and physical stability of highly sulphide-rich tailings stored under a shallow water cover. Mine Water Environ 32(1):42–55CrossRefGoogle Scholar
  16. Benzaazoua M, Bussière B, Nicholson R, Bernier L (1998) Geochemical behavior of multilayered cover made of desulphurized mine tailings. In Proc. of tailings and mine waste 98, Balkema, Colorado, p 389–398Google Scholar
  17. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. In: Holland HD, Turekian KK (eds) Environmental Geochemistry - Treatise on Geochemistry, vol 9. Oxford, pp 149–204Google Scholar
  18. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG, Paktunc D, Gould WD, Johnson DB (2014) The geochemistry of acid mine drainage. In: Holland, Turekian (eds) Treatise on Geochemistry, 2nd edn, vol 11, pp 131–190Google Scholar
  19. Bossé B, Bussière B, Maqsoud A, Hakkou R, Benzaazoua M (2015) Influence of water retention curve hysteresis on the behavior of a store-and-release cover. Mine Water Environ. doi: 10.1007/s10230-015-0350-8 Google Scholar
  20. Broda S, Aubertin M, Blessent D, Maqsoud A, Bussière B (2014) Simulating the variation of the phreatic surface level to assess reclamation techniques for an acidic tailings impoundment—a field-scale study. In: Proceedings of the 67th CGS conference GeoRegina 2014: engineering for the extremes, Regina, SK, CanadaGoogle Scholar
  21. Bussière B (2007) Colloquium (2004), hydro-geotechnical properties of hard rock tailings from metal mines and emerging geo-environmental disposal approaches. Can Geotech J 44(9):1019–1052CrossRefGoogle Scholar
  22. Bussière B, Nicholson R, Aubertin M, Servant S (1997a) Effectiveness of covers built with desulphurized tailings, Column tests investigation. In Proceedings, the 4th international conference on acid rock drainage, vol 2. p 763–778Google Scholar
  23. Bussière B, Nicholson R, Aubertin M, Benzaazoua M (1997b) Evaluation of the effectiveness of covers built with desulphurized tailings for preventing acid mine drainage. In: Proceedings, the 50th Canadian Geotechnical Conference, vol 1. Canadian Geotechnical Society, Ottawa, ON, p 17–25Google Scholar
  24. Bussière B, Aubertin M, Chapuis RP (2003) The behavior of inclined covers used as oxygen barriers. Can Geotech J 40(3):512–535CrossRefGoogle Scholar
  25. Bussière B, Benzaazoua M, Aubertin M, Mbonimpa M (2004) A laboratory study of covers made of low-sulphide tailings to prevent acid mine drainage. Environ Geol 45(5):609–622CrossRefGoogle Scholar
  26. Bussière B, Maqsoud A, Aubertin M, Martschuk J, McMullen J, Julien M (2006) Performance of the oxygen limiting cover at the LTA site, Malartic, Quebec. CIM Bull 1(6):1–11Google Scholar
  27. Bussière B, Aubertin M, Mbonimpa M, Molson J, Chapuis RP (2007) Field experimental cells to evaluate the hydrogeological behaviour of oxygen barriers made of silty materials. Can Geotech J 44(3):1–22CrossRefGoogle Scholar
  28. Chapuis RP, Aubertin M (2003) On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils. Can Geotech J 40(3):616–628CrossRefGoogle Scholar
  29. Cissokho F (2007) Études numériques des effets de la configuration des couvertures à effets de barrières capillaires inclinées sur la diffusion de l’oxygène. Mémoire de maîtrise, Département des Génies Civil, Géologique et des Mines, École Polytechnique de MontréalGoogle Scholar
  30. Collin M, Rasmuson A (1988) A comparison of gas diffusivity models for unsaturated porous media. Soil Sci Soc Am J 52:1559–1565CrossRefGoogle Scholar
  31. Cosset G, Aubertin M (2010) Physical and numerical modelling of a monolayer cover placed on reactive tailings. In: Proceedings of 63rd Canadian geotechnical conference & 1st joint CGS/CNC-IPA permafrost specialty conference, 12–16 Sept 2010, Calgary, AB, p 1197–1204Google Scholar
  32. Dagenais AM (2005) Techniques de contrôle du drainage minier acide basées sur les effets capillaires. Thèse de Doctorat, Département CGM, Ecole Polytechnique de MontréalGoogle Scholar
  33. Dagenais AM, Aubertin M, Bussière B (2006) Parametric study on the water content profiles and oxidation rates in nearly saturated tailings above the water table. In: Proceedings of the 7th ICARD, St-LouisGoogle Scholar
  34. Demers I, Bussière B, Mbonimpa M, Benzaazoua M (2009) Oxygen diffusion and consumption in low sulphide tailings covers. Can Geotech J 46:454–469CrossRefGoogle Scholar
  35. Demers I, Bussière B, Aachib M, Aubertin M (2011) Repeatability evaluation of instrumented column tests in cover efficiency evaluation for the prevention of acid mine drainage. Water Air Soil Pollut 219(1–4):113–128Google Scholar
  36. Demers I, Bussière B, Rousselle M, Aubertin M, Pabst T (2013) Laboratory evaluation of reclamation scenarios for the spillage areas of the abandoned Manitou mine site using Goldex tailings. In: Proc. World Mining Congress, Montreal, CIMGoogle Scholar
  37. Dobchuk B, Nichol C, Wilson W, Aubertin M (2013) Evaluation of a single-layer desulphurized tailings cover. Can Geotech J 50:777–792CrossRefGoogle Scholar
  38. Ebrahimi-B N, Gitirana Jr GFN, Fredlund DG, Fredlund MD, Samarasekera L (2004) A lower limit for the water permeability coefficient. In: Proceedings of the 57th Canadian Geotechnical Conference, 24–27 Oct 2004, Quebec, Qc, 8pGoogle Scholar
  39. Ethier MP, Bussière B, Aubertin M, Maqsoud A, Demers I, Lacroix R (2013) In situ evaluation of the elevated water table technique combined with a monolayer cover on reactive tailings: monitoring strategy and preliminary results. GeoMontreal 2013: Geosciences for Sustainability, In: 66th CGS Conference, Montreal, QC, 9pGoogle Scholar
  40. Ethier MP, Bussière B, Aubertin M, Demers I, Maqsoud A, Dionne J, Roy M (2014) Results from a field investigation of the elevated water table technique combined with a monolayer cover on acid generating tailings. GeoRegina 2014. CGSGoogle Scholar
  41. Gosselin M (2007) Etude de l’influence des caractéristiques hydrogéochimiques des résidus miniers réactifs sur la diffusion et la consommation de l’oxygène. Mémoire de maîtrise, Département des Génies Civil, Géologique et des Mines, École Polytechnique de Montréal, 216pGoogle Scholar
  42. Gosselin M, Mbonimpa M, Pabst T, Aubertin M (2012) Evaluating the oxygen reaction rate coefficient of sulphidic tailings using laboratory and field tests. In: Proceedings of the 9th international conference on acid rock drainage (ICARD), 20–26 May 2012. Ottawa, ON, CanadaGoogle Scholar
  43. Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl Geochem 14:511–530CrossRefGoogle Scholar
  44. Lindsay MBJ, Moncur MC, Bain JG, Jambor JL, Ptacek CJ, Blowes DW (2015) Geochemical and mineralogical aspects of sulfide mine tailings. Appl Geochem 57:157–177CrossRefGoogle Scholar
  45. Maqsoud A, Bussière B, Aubertin M, Mbonimpa M (2012) Predicting hysteresis of the water retention curve from basic properties of granular soils. Geotech Geol Eng 30:1147–1159CrossRefGoogle Scholar
  46. Mbonimpa M, Aubertin M, Chapuis RP, Bussière B (2002) Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech Geol Eng 20(3):235–259CrossRefGoogle Scholar
  47. Mbonimpa M, Aubertin M, Aachib M, Bussière B (2003) Diffusion and consumption of oxygen in unsaturated cover materials. Can Geotech J 40(5):916–932CrossRefGoogle Scholar
  48. Mbonimpa M, Aubertin M, Bussière B (2011) The oxygen consumption test to evaluate the diffusive flux into reactive tailings: interpretation and numerical assessment. Can Geotech J 48:878–890CrossRefGoogle Scholar
  49. Molson J, Aubertin M, Bussière B, Benzaazoua M (2008) Geochemical transport modeling of drainage from experimental mine tailings cells covered by capillary barriers. Appl Geochem 23:1–24CrossRefGoogle Scholar
  50. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522CrossRefGoogle Scholar
  51. Nicholson RV (1994) Laboratory studies of pyrrhotite oxidation kinetics. In: Jambor JL, Blowes DW (eds) Short course handbook on environmental geochemistry of sulfide mine-wasteGoogle Scholar
  52. Nicholson RV, Gillham RW, Cherry JA, Reardon EJ (1989) Reduction of acid generation in mine tailings through the use of moisture-retaining layers as oxygen barriers. Can Geotech J 26:1–8CrossRefGoogle Scholar
  53. Nordstrom DK (2000) Advances in the hydrogeochemistry and microbiology of acid mine waters. Int Geol Rev 42:499–515CrossRefGoogle Scholar
  54. Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16CrossRefGoogle Scholar
  55. Orava AD, Tremblay GA, Tibble A, Nicholson R (1997) Prevention of acid rock drainage through the application of in-pit disposal and elevated water table concepts. In: Proceedings of the 4th international conference on acid rock drainage (ICARD), vol 3. Vancouver, p 973–983Google Scholar
  56. Ouangrawa M (2007) Etude expérimentale et analyse numérique des facteurs qui influencent le comportement hydro-géochimique de résidus miniers sulfureux partiellement submergés. Thèse de doctorat, Département des Génies Civil, Géologique et des Mines, École Polytechnique de Montréal. 428pGoogle Scholar
  57. Ouangrawa M, Molson J, Aubertin M, Bussière B, Zagury GJ (2009) Reactive transport modelling of mine tailings columns with capillarity-induced high water saturation for preventing sulfide oxidation. Appl Geochem 24:1312–1323CrossRefGoogle Scholar
  58. Ouangrawa M, Aubertin M, Molson J, Bussière B, Zagury GJ (2010) Preventing acid mine drainage with an elevated water table: long-term column experiments and parameter analysis. Water Air Soil Pollut 213:437–458CrossRefGoogle Scholar
  59. Pabst T (2011) Etude expérimentale et numérique du comportement hydro-géochimique de recouvrements placés sur des résidus sulfureux partiellement oxydés. Ph.D. Thesis, Mineral Engineering, Ecole Polytechnique de Montréal, 582pGoogle Scholar
  60. Pabst T, Molson J, Aubertin M, Bussière B (2011) Physical and geochemical transport modelling of pre-oxidised acid-generating tailings with a monolayer cover. In: Proc. 2011 mine closure conference, Lake Louise, AB, 18–21 Sept 2011Google Scholar
  61. Pabst T, Aubertin M, Bussière B, Molson J (2014) Column tests to characterize the hydrogeochemical response of pre-oxidized acid-generating tailings with a monolayer cover. Water Air Soil Pollut 225:1841CrossRefGoogle Scholar
  62. Sjoberg Dobchuck B, Wilson GW, Aubertin M (2003) Evaluation of a single-layer desulfurised tailings cover. In: Proc. 6th ICARD Cairns, QLD, 12–18 July 2003Google Scholar
  63. van Genuchten MTh (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  64. van Genuchten MTh, Nielsen DR (1985) On describing and predicting the hydraulic properties of unsaturated soils. Ann Geophys 3:615–628Google Scholar
  65. Williamson MA, Rimstidt JD (1994) The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation. Geochim Cosmochim Acta 58:5443–5454CrossRefGoogle Scholar
  66. Wilson GW, Albright WH, Gee GW, Fayer MJ, Ogan BD (1999) Alternative cover assessment project, Phase 1 report final technical report. US Environmental Protection Agency, Washington, p 202Google Scholar
  67. Yanful EK, Catalan LJJ (2002) Predicted and field-measured resuspension of flooded mine tailings. ASCE J Environ Eng 128:341–351CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Civil, Geological and Mining EngineeringEcole Polytechnique de MontréalMontréalCanada
  2. 2.Research Institute on Mines and EnvironmentUQAT-PolytechniqueCanada
  3. 3.Department of Applied SciencesUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada
  4. 4.Department of Geology and Geological EngineeringUniversité LavalQuébecCanada

Personalised recommendations