Geotechnical and Geological Engineering

, Volume 34, Issue 3, pp 759–776 | Cite as

An Overview of Electrokinetic Consolidation of Soils

  • Mona Malekzadeh
  • Julie Lovisa
  • Nagaratnam Sivakugan
State-of-the-Art Review


Electrokinetic stabilization is one of the techniques that improve the geotechnical properties of the soils. It was pioneered by Casagrande in late 1940s and has not seen much development since then, especially in large-scale field applications. Some bench scale studies have been carried out during the past two decades and there have been some small scale field studies and limited field applications, mostly on soft soils. Due to lack of understanding of the physiochemical and electrochemical changes in the soil during electrokinetic stabilization, uncertain energy costs, loss of efficiency with time and the corrosion of electrodes, this method is usually considered as a last resort for large-scale practical applications. The objective of this paper is to highlight the critical parameters affecting electrokinetic consolidation, and to discuss their effects on the efficiency of the process. A better understanding of these critical parameters and their effects will enable geotechnical engineers to design the electrokinetic consolidation operation more effectively and make it an economically viable process for many situations.


Electrokinetic stabilization Electroosmosis Consolidation Zeta potential Soil salinity 


  1. Abdullah WS, Al-Abadi AM (2010) Cationic–electrokinetic improvement of an expansive soil. Appl Clay Sci 47(3–4):343–350. doi: 10.1016/j.clay.2009.11.046 CrossRefGoogle Scholar
  2. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647. doi: 10.1021/es00049a002 CrossRefGoogle Scholar
  3. Acar Y, Alshawabkeh A (1996) Electrokinetic remediation. I. pilot-scale tests with Pb-spiked kaolinite. ASCE J Geotech Eng 122:173–185CrossRefGoogle Scholar
  4. Acar YB, Gale RJ, Alshawabkeh AN, Marks RE, Puppala S, Bricka M, Parker R (1995) Electrokinetic remediation: basics and technology status. J Hazard Mater 40(2):117–137. doi: 10.1016/0304-3894(94)00066-P CrossRefGoogle Scholar
  5. Adamson LG, Rieke Iii HH, Grey RR, Chilingar GV (1967) Electrochemical treatment of highly shrinking soils. Eng Geol 2(3):197–203. doi: 10.1016/0013-7952(67)90019-1 CrossRefGoogle Scholar
  6. Alshawabkeh A, Acar Y (1996) Electrokinetic remediation. II: theoretical model. J Geotech Eng 122(3):186–196. doi: 10.1061/(ASCE)0733-9410(1996)122:3(186) CrossRefGoogle Scholar
  7. Asavadorndeja P, Glawe U (2005) Electrokinetic strengthening of soft clay using the anode depolarization method. Bull Eng Geol Environ 64(3):237–245. doi: 10.1007/s10064-005-0276-7 CrossRefGoogle Scholar
  8. Ballou E (1955) Electroosmotic flow in homoionic kaolinite. J Colloid Sci 10:450–460CrossRefGoogle Scholar
  9. Bergado DT, Sasanakul I, Horpibulsuk S (2003) Electro-osmotic consolidation of soft Bangkok clay using copper and carbon electrodes with PVD, vol 26. ETATS-UNIS: American Society for Testing and Materials, West Conshohocken, PAGoogle Scholar
  10. Bjerrum L, Moum J, Eide O (1967) Application of electro-osmosis to a foundation problem in a Norwegian Quick Clay. Géotechnique 17(3):214–235CrossRefGoogle Scholar
  11. Burnotte F, Lefebvre G, Grondin G (2004a) A case record of electroosmotic consolidation of soft clay with improved soil-electrode contact. Can Geotech J 41(6):1038–1053CrossRefGoogle Scholar
  12. Burnotte F, Lefebvre G, Grondin G (2004b) A case record of electroosmotic consolidation of soft clay with improved soil–electrode contact. Can Geotech J 41(6):1038–1053. doi: 10.1139/t04-045 CrossRefGoogle Scholar
  13. Casagrande L (1948) Electro-osmosis in soils. Paper presented at the Géotechnique, London, EnglandGoogle Scholar
  14. Casagrande L (1949) Electro-osmosis in soils. Géotechnique 1:1959–1977Google Scholar
  15. Casagrande L (1952) Electro-osmosis stabilization of soils. J Boston Soc Civil Eng 39(1):51–83Google Scholar
  16. Casagrande L (1983) Stabilization of soils by means of electro-osmosis. J Boston Soc Civil Eng ASCE 69(2):255–302Google Scholar
  17. Chappell BA, Burton PL (1975) Electra-osmosis applied to unstable embankment. J Geotech Eng Div ASCE 101(GT8):733–739Google Scholar
  18. Chen JL, Murdoch LC (1997) Field demonstration of insitu electroosmosis between horizontal electrodes insitu remediation of the geoenviroment. Paper presented at the proceedings ASCE annual convention, MinneapolisGoogle Scholar
  19. Chen H, Mujumdar AS, Raghavan GSV (1996) Laboratory experiments on electroosmotic dewatering of vegetable sludge and mine tailings. Dry Technol 14(10):2435–2445CrossRefGoogle Scholar
  20. Chien SC, Ou CY, Wang YG (2009) Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil. Appl Clay Sci 44(3–4):218–224CrossRefGoogle Scholar
  21. Diamond S, Kinter EB (1965) Mechanisms of soil-lime stabilization. Highway Res Rec 92:83–102Google Scholar
  22. Ermakova EN, Kotik DS, Polyakov SV, Bösinger T, Sobchakov LA (2006) A power line as a tunable ULF-wave radiator: properties of artificial signal at distances of 200 to 1000 km. J Geophys Res. doi: 10.1029/2005JA011420 Google Scholar
  23. Esrig MI (1968) Pore pressures, consolidation and electro-kinetics. ASCE J Soil Mech Found 94(SM4):899–921Google Scholar
  24. Esrig MI, Henkel DJ (1968) Some aspects of soil mechanics in relation to vehicle mobility. Buffalo Inc.: Cornell Aeronautical Laboratory, New YorkGoogle Scholar
  25. Evans HE, Lewis RW (1970) Effective stress principle in saturated clay. J Soil Mech Div ASCE 96(SM2):671–683Google Scholar
  26. Fan X, Wang H, Luo Q, Ma J, Zhang X (2007) The use of 2D non-uniform electric field to enhance in situ bioremediation of 2,4-dichlorophenol-contaminated soil. J Hazard Mater 148(1–2):29–37. doi: 10.1016/j.jhazmat.2007.01.144 CrossRefGoogle Scholar
  27. Fetzer C (1967) Electro-osmotic stabilization of west branch dam. Trans Am Soc Civ Eng 133:540–563Google Scholar
  28. Fourie AB, Jones CJFP (2010) Improved estimates of power consumption during dewatering of mine tailings using electrokinetic geosynthetics (EKGs). Geotext Geomembr 28(2):181–190. doi: 10.1016/j.geotexmem.2009.10.007 CrossRefGoogle Scholar
  29. Fourie AB, Johns DG, Jones CJFP (2007) Dewatering of mine tailings using electrokinetic geosynthetics. Can Geotech J 44:2CrossRefGoogle Scholar
  30. Glendinning S, Jones CJFP, Pugh RC (2005) Reinforced soil using cohesive fill and electrokinetic geosynthetics (EKG). Int J Geomech 5(2):138–146CrossRefGoogle Scholar
  31. Glendinning S, Jones CJFP, Lamont-Black J, Hall J (2008) Treatment of lagooned sewage sludge in situ using electrokinetic geosynthetics. Geosynth Int 15(3):192–204. doi: 10.1680/gein.2008.15.3.192 CrossRefGoogle Scholar
  32. Gray DH, Mitchell JK (1967) Fundamental aspects of electro-osmosis in soils. J Soil Mech Found Div ASCE 93(6):209–236Google Scholar
  33. Hamir RB, Jones C, Clarke BG (2001) Electrically conductive geosynthetics for consolidation and reinforced soil. Geotext Geomembr 19(8):455–482. doi: 10.1016/s0266-1144(01)00021-8 CrossRefGoogle Scholar
  34. Helmholtz HLF (1879) Studies of electric boundary layers. Wied Ann 7:337–382CrossRefGoogle Scholar
  35. Hu LM, Wu WL, Wu H (2012) Numerical model of electroosmotic consolidation in clay. Geotechnique 62(6):537–541CrossRefGoogle Scholar
  36. Ivliev EA (2008) Electro-osmotic drainage and stabilization of soils. Soil Mech Found Eng 45(6):211–218. doi: 10.1007/s11204-009-9031-6 CrossRefGoogle Scholar
  37. Jayasekera S, Hall S (2007) Modification of the properties of salt affected soils using electrochemical treatments. Geotech Geol Eng 25(1):1–10. doi: 10.1007/s10706-006-0001-8 CrossRefGoogle Scholar
  38. Jayasekera S, Mewett J, Hall S (2004) Effects of electrokinetic treatments on the properties of a salt affected soil. Aust Geomech J 39(4):33–46Google Scholar
  39. Jeyakanthan V, Gnanendran CT, Lo SCR (2011) Laboratory assessment of electro-osmotic stabilization of soft clay. Can Geotech J 48(12):1788–1802. doi: 10.1139/t11-073 CrossRefGoogle Scholar
  40. Johnston IW, Butterfield R (1977) A laboratory investigation of soil consolidation by electro-osmosis. Aust Geomech J G7:21–32Google Scholar
  41. Jones C, Glendinning S, Huntley DT, Lamont-Black J (2006a) Soil consolidation and strengthening using electrokinetic geosynthetics—concepts and analysis. Millpress Science Publishers, RotterdamGoogle Scholar
  42. Jones CJFP, Glendinning S, Huntley D, Lamont-Black J (2006b) Case history: In-situ dewatering of lagooned sewage sludge using Electrokinetic geosynthetics (EKG). In: Kuwanao J, Koseki J (eds) Eighth International Conference on Geosynthetics. Millpress, Rotterdam, pp 539–542Google Scholar
  43. Jones CJFP, Lamont-Black J, Glendinning S (2011) Electrokinetic geosynthetics in hydraulic applications. Geotext Geomembr 29(4):381–390. doi: 10.1016/j.geotexmem.2010.11.011 CrossRefGoogle Scholar
  44. Kalumba D, Glendinning S, Rogers C, Tyrer M, Boardman D (2009) Dewatering of tunneling slurry waste using electrokinetic geosynthetics. J Environ Eng 135(11):1227–1236. doi: 10.1061/(ASCE)0733-9372(2009)135:11(1227) CrossRefGoogle Scholar
  45. Kamarudin B, Mohd RT, Khairul AK (2010) Electrokinetic treatment on a tropical residual soil. Paper presented at the proceedings of the ICE—ground improvementGoogle Scholar
  46. Kaniraj S, Yee JHS (2011) Electro-Osmotic consolidation experiments on an organic soil. Geotech Geol Eng 29(4):505–518. doi: 10.1007/s10706-011-9399-8 CrossRefGoogle Scholar
  47. Kaniraj ASR, Huong HL, Yee JHS (2011a) Electro-Osmotic consolidation studies on peat and clayey silt using electric vertical drain. Geotech Geol Eng 29(3):277–295. doi: 10.1007/s10706-010-9375-8 CrossRefGoogle Scholar
  48. Kaniraj S, Huong HL, Yee JHS (2011b) Electro-Osmotic consolidation studies on peat and clayey silt using electric vertical drain. Geotech Geol Eng 29(3):277–295. doi: 10.1007/s10706-010-9375-8 CrossRefGoogle Scholar
  49. Karunaratne GP, Jong HK, Chew SH (2004) New electrically conductive geosynthetics for soft clay consolidation. Paper presented at the GeoAsia 2004, Seoul, KoreaGoogle Scholar
  50. Kim K-J, Kim D-H, Yoo J-C, Baek K (2011) Electrokinetic extraction of heavy metals from dredged marine sediment. Sep Purif Technol 79(2):164–169. doi: 10.1016/j.seppur.2011.02.010 CrossRefGoogle Scholar
  51. Laursen S, Jensen JB (1993) Electro-osmosis in filter cakes of activated sludge. Water Resour 27(5):777–783Google Scholar
  52. Lee G, Ro H, Lee S (2007) Effects of triethyl phosphate and nitrate on electro-kinetically enhanced biodegradation of diesel in low permeability soils. Environ Technol 28:853–860CrossRefGoogle Scholar
  53. Lefebvre G, Burnotte F (2002) Improvements of electroosmotic consolidation of soft clays by minimizing power loss at electrodes. Can Geotech J 39(2):399–408CrossRefGoogle Scholar
  54. Lewis RW, Humpheson C (1974) Numerical analysis of electro-osmotic flow in soils. ASCE J Soil Mech Found 11(3):51. doi: 10.1016/0148-9062(74)91583-6 Google Scholar
  55. Liaki C, Rogers CDF, Boardman DI (2010) Physico-chemical effects on clay due to electromigration using stainless steel electrodes. J Appl Electrochem 40(6):1225–1237. doi: 10.1007/s10800-010-0096-8 CrossRefGoogle Scholar
  56. Lo KY, Ho KS, Inculet II (1991a) Field test of electroosmotic strengthening of soft sensitive clay. Can Geotech J 28(1):74–83CrossRefGoogle Scholar
  57. Lo KY, Inculet II, Ho KS (1991b) Electroosmotic strengthing of soft sensitive clays. Can Geotech J 28(1):62–73CrossRefGoogle Scholar
  58. Loch JPG, Lima A, Kleingeld P (2010) Geochemical effects of electro-osmosis in clays. J Appl Electrochem 40(6):1249–1254. doi: 10.1007/s10800-010-0098-6 CrossRefGoogle Scholar
  59. Lockhart NC (1983) Electro-osmotic dewatering of clays: influence of voltage. Colloids Surf A 6(3):229–238CrossRefGoogle Scholar
  60. Lockhart NC (1992) Combined field dewatering—bridging the science-industry gap. Drying Technol 10(4):839–874. doi: 10.1080/07373939208916485 CrossRefGoogle Scholar
  61. Lockhart NC, Stickland RE (1984) Dewatering coal washery tailings ponds by electroosmosis. Powder Technol 40(1–3):215–221. doi: 10.1016/0032-5910(84)85067-6 CrossRefGoogle Scholar
  62. Lomize GM, Netushil AV (1958) Elektroosmoticheskoe vodoponizhenie. WorldCat, MoskvaGoogle Scholar
  63. Long E, George W (1967) Turnagain slide stabilization, An- chorage, Alaska. J Soil Mech Found Div ASCE 93(4):611–627Google Scholar
  64. Luo Q, Wang H, Zhang X, Qian Y (2005) Effect of direct electric current on the cell surface properties of phenol-degrading bacteria. Appl Environ Microbiol 71(1):423–427. doi: 10.1128/aem.71.1.423-427.2005 CrossRefGoogle Scholar
  65. Micic S, Shang JQ, Lo KY, Lee YN, Lee SW (2001) Electrokinetic strengthening of a marine sediment using intermittent current. Can Geotech J 38(2):287–302. doi: 10.1139/t00-098 CrossRefGoogle Scholar
  66. Miller S, Murphy A, Veal C, Young M (1999) Electrodewatering of sewage sludge—pilot scale studies. American Filtration & Separations Society, NorthportGoogle Scholar
  67. Mitchell JK (1991) Conduction uhenomena: from theoiy to geotecinical practice. Géotechnique 41(3):299–340CrossRefGoogle Scholar
  68. Mitchell JK (1993) Fundamentals of soil behavior. Wiley, New YorkGoogle Scholar
  69. Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. Wiley, HobokenGoogle Scholar
  70. Mohamedelhassan E, Shang JQ (2001a) Analysis of electrokinetic sedimentation of dredged Welland River sediment. J Hazard Mater 85(1–2):91–109. doi: 10.1016/S03043894(01)00223-0 CrossRefGoogle Scholar
  71. Mohamedelhassan E, Shang JQ (2001b) Analysis of electrokinetic sedimentation of dredged Welland River sediment. J Hazard Mater 85(1–2):91–109. doi: 10.1016/S0304-3894(01)00223-0 CrossRefGoogle Scholar
  72. Muraoka AB, Linarèsj K, Varret F (2011). Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: a monte carlo study. Phys Rev B84. doi: 10.1016/j.seppur.2011.02.032
  73. Olsen HW (1972) Liquid Movement through kaolinite under hydraulic, electric, and osmotic gradients. Am Assoc Pet Geol Bull 56(10):2022–2028Google Scholar
  74. Ou CY, Chien SC, Chang HH (2009) Soil improvement using electroosmosis with the injection of chemical solutions: field tests. Can Geotech J 46(6):727–733. doi: 10.1139/t09-012 CrossRefGoogle Scholar
  75. Pamukcu S, Weeks A, Wittle JK (1997) Electrochemical extraction and stabilization of selected inorganic species in porous media. J Hazard Mater 55(1–3):305–318CrossRefGoogle Scholar
  76. Perrin J (1904) Mecanisme de l’e1ectrisation de contact et solutions colloYdales. J Chem Phys 2:601–651Google Scholar
  77. Pevzner ME (1978) Control of rock deformations in quarries [in Russian]. Paper presented at the Nedra, MoscowGoogle Scholar
  78. Pevzner ME, Valer’yanova LI, Belen’kii PG (1971) Electro-chemical stabilization of soils during rock excavation. Paper presented at the 8th all-union conference on soil stabilization and strengthening [in Russian], LeningradGoogle Scholar
  79. Pugh RS (2002) Some observations on the influence of recent climate change on the subsidence of shallow foundations. Proc Inst Civil Eng Geotech Eng 155(1):23–25Google Scholar
  80. Quincke G (1861) Ueber die fortfuhrung materieller theilchen durch strmende electricitat. Ann Phys 113:513–598CrossRefGoogle Scholar
  81. Reddy KR, Urbanek A, Khodadoust AP (2006) Electroosmotic dewatering of dredged sediments: bench-scale investigation. J Environ Manage 78(2):200–208. doi: 10.1016/j.jenvman.2005.04.018 CrossRefGoogle Scholar
  82. Reuss FF (1809) Memoires de la societe imperiale des naturalists de Moscow, vol 2, pp 327–337Google Scholar
  83. Rhoades JD, Ingvalson RD (1971) Determining salinity in field soils with soil resistance measurement. Soil Sci Soc Am J 35:54–60CrossRefGoogle Scholar
  84. Rittirong A, Shang J, Mohamedelhassan E, Ismail M, Randolph M (2008) Effects of electrode configuration on electrokinetic stabilization for caisson anchors in calcareous sand. J Geotech Geoenviron Eng 134(3):352–365. doi: 10.1061/(ASCE)1090-0241(2008)134:3(352) CrossRefGoogle Scholar
  85. Rozas F, Castellote M (2012) Electrokinetic remediation of dredged sediments polluted with heavy metals with different enhancing electrolytes. Electrochim Acta 86:102–109. doi: 10.1016/j.electacta.2012.03.068 CrossRefGoogle Scholar
  86. Sah JG, Chen JY (1998) Study of the electrokinetic process on Cd and Pb spiked soils. J Hazard Mater 58(1–3):301–315. doi: 10.1016/S0304-3894(97)00140-4 CrossRefGoogle Scholar
  87. Schaad W (1958) Praktische Anwendung der Elektro-osmose im Gebiet des Grundbaues. Bautechnik 35:6–11Google Scholar
  88. Schaad W, Haefeli R (1947) Electrokinetic phenomena and their application in soil mechanics. Schweizerisehe Bauzeitung 65, 216–217, 223–226, 235–238Google Scholar
  89. Segall BA, Bruell CJ (1992) Electroosmotic contaminant-removal processes. J Environ Eng Asce 118(1):84–100. doi: 10.1061/(asce)0733-9372(1992)118:1(84) CrossRefGoogle Scholar
  90. Shang JQ (1997) Electrokinetic sedimentation: a theoretical and experimental study. Can Geotech J 34(2):305–314CrossRefGoogle Scholar
  91. Shang JQ (1998) Electokinetic dewatering of clay slurries as engineered soil covers. Can Geotech J 34(1):78–86. doi: 10.1139/t96-083 CrossRefGoogle Scholar
  92. Shang JQ, Dunlap WA (1996) Improvement of soft clays by high-voltage electrokinetics. J Geotech Eng ASCE 122(4):274–280CrossRefGoogle Scholar
  93. Shang JQ, Mohamedelhassan E, Ismail MA (2004) Electrochemical cementation of offshore calcareous soil. Can Geotech J 41(5):877–893CrossRefGoogle Scholar
  94. Smoluchowski M (1921) Elektrische endosmose und strömungsströme. Handbuch der Elektrizität und des Magnetismus 2:366–428Google Scholar
  95. Sprute RH, Kelsh DJ (1975) Electrokinetic densification of hydraulic backfill—a field test. Dept. of the Interior, Bureau of Mines, PittsburghGoogle Scholar
  96. Sprute RH, Kelsh DJ (1980) Dewatering fine particle suspensions with direct current. Paper presented at the international symposium of fine particle processing, Las VegasGoogle Scholar
  97. Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. Wiley, New YorkGoogle Scholar
  98. Veder C (1981) In: Hilbert R (ed) Landslides and their stabilization. Springer, New YorkGoogle Scholar
  99. Wu W (2009) Theoretical model and numerical simulation of electro-osmotic consolidation on soft clay. Tsinghua University, BeijingGoogle Scholar
  100. Yan S, Singh AN, Fu S, Liao C, Wang S, Li Y, Hu L (2012) A soil fauna index for assessing soil quality. Soil Biol Biochem 47:158–165. doi: 10.1016/j.soilbio.2011.11.014 CrossRefGoogle Scholar
  101. Yang M, Choi B, Park H, Hong W, Lee S, Park T (2010) Development of a glucose biosensor using advanced electrode modified by nanohybrid composing chemically modified graphene and ionic liquid. Electroanalysis 22(1223–1228). doi: 10.1365/s10337-010-1670-2
  102. Yuan C, Weng C-H (2003) Sludge dewatering by electrokinetic technique: effect of processing time and potential gradient. Adv Environ Res 7(3):727–732. doi: 10.1016/S1093-0191(02)00030-8 CrossRefGoogle Scholar
  103. Yukawa H, Yoshida H, Kobayashi K, Hakoda M (1976) Fundamental study on electroosmotic dawatering of sludge at constant electric current. J Chem Eng Jpn 9:402–407CrossRefGoogle Scholar
  104. Yukselen-Aksoy Y, Reddy KR (2010) Effect of soil composition on electrokinetically enhanced persulfate oxidation of polychlorobiphenyls. Electrochim Acta 86:164–169CrossRefGoogle Scholar
  105. Zhinkin GN, Kalganov VF (1980) Electro-chemical treatment of clayey soils in the beds of structures. Stroiizdat, MoscowGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Mona Malekzadeh
    • 1
  • Julie Lovisa
    • 1
  • Nagaratnam Sivakugan
    • 1
  1. 1.School of Engineering and Physical SciencesJames Cook UniversityTownsvilleAustralia

Personalised recommendations