Advertisement

Geotechnical and Geological Engineering

, Volume 33, Issue 3, pp 641–660 | Cite as

Geological and geotechnical characteristics of recent lahar deposits from El Misti volcano in the city area of Arequipa, South Peru

  • Carlos PallaresEmail author
  • Denis Fabre
  • Jean-Claude Thouret
  • Claude Bacconnet
  • Juan Antonio Charca-Chura
  • Kim Martelli
  • Aurélie Talon
  • Calixtro Yanqui-Murillo
Original paper

Abstract

This study provides geotechnical characteristics of recent lahar deposits on which the city of Arequipa (South Peru) is built. Geological and sedimentological observations point out the existence of three types of lahar deposits in the Arequipa region: fine hyperconcentrated-flow deposits, coarse hyperconcentrated-flow deposits, and debris-flow deposits. The mineral components identified in the three types of lahars show that they are linked to the outcropping volcanic rocks around Arequipa city. Physical measurements (dry density, grain-size distribution, specific surface of the grains based on methylene blue tests) and mechanical tests (in situ dynamic cone penetration soundings, oedometric and Casagrande shear-box tests) were performed on the three main categories of soils. Our results highlight that hyperconcentrated-flow deposits are fine sand- and silt-rich deposits that lack clay particles. Their dry density is low (ρd = 1.25 g/cm3) and their friction angle is high (ϕ = 38°) which contribute to the peculiar dynamics of lahar flows and to their high erosive power. The low apparent density provides a better capacity for the debulking process, whereas the high friction angle takes part in the erosion process. Finally, the geotechnical properties observed here suggest that the high contents in silica pyroclastic particles and the lack of clay or fine particles control the rheological behavior of lahar deposits. We can also consider that the rheological behavior of lahars through time is complex and that existing older lahars can be remobilized by heavy rain or future stream flows and lahars.

Keywords

Lahar Hyperconcentrated-flow deposits Debris-flow deposits El Misti volcano Geotechnical properties Dynamic penetrometer 

Notes

Acknowledgments

We thank the Project Laharisk (2010–2013) funded by the French National Agency for Research (ANR—RiskNat) and all our Peruvian colleagues in Arequipa for their help, especially during the work field. The first author wishes also to thank especially V. Pallares and X. Quidelleur.

References

  1. Bardou E, Boivin P, Pfeifer HR (2007) Properties of debris-flow deposits and source materials compared: implications for debris flow characterization. Sedimentology 54:469–480CrossRefGoogle Scholar
  2. Cattoni E, Cecconi M, Pane V (2007) Geotechnical properties of an unsaturated pyroclastic soil from Roma. Bull Eng Geol Environ 66:403–414CrossRefGoogle Scholar
  3. Cecconi M, Scarapazzi M, Viggiani GMB (2010) On the geology and the geotechnical properties of pyroclastic flow deposits of the Colli Albani. Bull Eng Geol Environ 69:185–206CrossRefGoogle Scholar
  4. Chaigneau L, Bacconnet C, Gourvès R, (2000) Penetration test coupled with geotechnical classification for compacting control. An international conference on geotechnical and geological engineering, Geo Eng 2000, Melbourne, AustraliaGoogle Scholar
  5. Cobeñas G, Thouret JC, Bonadonna C, Boivin P (2012) The c.2030 yr. BP-old Plinian eruption of El Misti, Peru: characteristics of the fallout and pyroclastic flows, and eruption dynamics. J Volcanol Geotherm Res 241–242:105–120. doi: 10.1016/j.jvolgeores.2012.06.006 CrossRefGoogle Scholar
  6. Cuadros-Paz J, Meza-Arestegui P (2009) Puente Chilina : geologia del proyecto. Technical report (unpublished). Regional Government of Arequipa, p 33Google Scholar
  7. Delaite G, Thouret JC, Sheridan M, Labazuy P, Stinton A, Souriot T, Van Westen C (2005) Assessment of volcanic hazards of El Misti and in the city of Arequipa, Peru, based on GIS and simulations, with emphasis on lahars. Zeitschrift für Geomorphologie NF Suppl 140:209–231Google Scholar
  8. Doyle EE, Cronin SJ, Cole SE, Thouret JC (2010) The coalescence and organization of lahars at Semeru volcano. Indonesia Bull Volcanol. 72(8):961–970CrossRefGoogle Scholar
  9. Dumaisnil C, Thouret JC, Chambon G, Doyle EE, Cronin SJ, Surono (2010) Hydraulic, physical and rheological characteristics of rain-triggered lahars at Semeru volcano. Indonesia. Earth Surf. Process. Landforms 35:1573–1590CrossRefGoogle Scholar
  10. Chester D, Degg M, Duncan, AM, Guest JE (2001) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Global Env Change, part B: Environmental hazards, pp 89–103Google Scholar
  11. Enjolras G, Thouret JC, Martelli K, Santoni O, Luque JA, Nagata M, Arguedas A, Macedo L (2013) Combined criteria for assessing lahar and flood-prone hazard and risk zones in the city area of Arequipa, Peru. Nat Hazards Earth Syst Sci. (EGU), Accepted 7 Jan 2013Google Scholar
  12. Espinace R, Villavicencio G, Palma J, Breul P, Bacconnet C, Benz MA, Gourvès R (2013) Stability of chilean’s tailings dams with the Panda® penetrometer. Experiences of the last 10th, Proceedings of the 18th international conference on soil mechanics and geotechnical engineering, ParisGoogle Scholar
  13. Fabre D, Ritzenthaler A, Maquaire O, Ambroise B, Thiery Y, Truchet E, Malet JP, Monnet J (2002) Apport du pénétromètre dynamique léger pour la connaissance du manteau d’altération des marnes. Application au bassin-versant du Laval, Draix (Alpes de Haute Provence). Proc. Int. Symp. “Geomorphology: from expert opinion to modelling”. Strasbourg, Delahaye et al. pp 185–192Google Scholar
  14. Gourvès R, Barjot B (1995) Le pénétromètre dynamique léger Panda. Proc. Int. Conf. on Soil Mech & Found. Eng, Copenhagen, pp 83–88Google Scholar
  15. Langton DD (1999) The Panda lightweight penetrometer for soil investigation and monitoring material compaction. Ground Eng 32:33–37Google Scholar
  16. Lavigne F, Thouret JC (2000) Les lahars : dépôts, origines et dynamique. Bull Soc Géol Fra 1741:545–557CrossRefGoogle Scholar
  17. Legros F, Cantagrel JM, Devouard B (2000) Pseudotachylite (frictionite) at the base of the Arequipa volcanic landslide deposit (Peru): Implications for emplacement mechanisms. J Geol 108:601–611CrossRefGoogle Scholar
  18. Maquaire O, Ritzenthaler A, Fabre D, Ambroise B, Thiery Y, Truchet E, Malet JP, Monnet J (2002) Caractérisation des profils d’altération par pénétromètrie dynamique. Application aux marnes noires à Draix (Alpes de Haute Provence). C. R. Geoscience 334:1–7CrossRefGoogle Scholar
  19. Martelli K (2011) The physical vulnerability of urban areas facing the threat of lahars and flash floods: application to the case study of Arequipa, Peru. PhD thesis, University Blaise Pascal, Clermont-Ferrand p 341Google Scholar
  20. O’ Rourke TD (1988) Geotechnical properties of cemented volcanic soil. ASCE J Geotech Eng 114(10):1126–1147CrossRefGoogle Scholar
  21. Olalla C, Hernandez LE, Rodriguez-Losada JA, Perucho A (2010) Volcanic rock mechanics: rock mechanics and geo-engineering in volcanic environments. CRC Press, Madrid 368CrossRefGoogle Scholar
  22. Paquereau P, Thouret JC, Wörner G, Fornari M, Macedo O, Roperch P (2005) Caractérisation des ignimbrites néogènes du bassin d’Arequipa, Pérou. Geosci 337:477–486CrossRefGoogle Scholar
  23. Paquereau-Lebti P, Thouret JC, Wörner G, Fornari M (2006) Neogene and quaternary ignimbrites in the area of Arequipa, southern Peru: stratigraphical and petrological correlations. J Volcanol Geotherm Res 154:251–275CrossRefGoogle Scholar
  24. Paquereau-Lebti P, Fornari M, Roperch P, Thouret JC, Macedo O (2008) Paleomagnetic, magnetic fabric properties, and 40 Ar/39 Ar dating, of Neogene: quaternary ignimbrites in the Arequipa area, Southern Peru. Flow directions and implications for the emplacement mechanisms. Bull Volcanol 70:977–997CrossRefGoogle Scholar
  25. Pierson TC (2005) Hyperconcentrated flow: transitional process between water flow and debris flow. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, BerlinGoogle Scholar
  26. Powers MC (1953) A new roundness scale for sedimentary particles. J Sediment Petrol 23:117–119CrossRefGoogle Scholar
  27. Schmertmann JH, (1978) Guidelines for CPT in: Performance and Design. U.S. Dept. of transportation, FHA, WashingtonGoogle Scholar
  28. Scott KM (1988) Origins, behavior and sedimentology of lahars and lahar–runout flows in Toutle Cowlitz river system, Mount St-Helens, Washington, US Geological Survey, pp 1447AGoogle Scholar
  29. Serrano A, Olalla C, Perucho A (2002) Mechanical collapsible rocks. Symp. I.S.R.M. “Eurock 2002”: Madeira PortugalGoogle Scholar
  30. Shepard FP (1963) Submarine geology. Harper & Row, EvanstonGoogle Scholar
  31. Smith GA, Fritz WJ (1989) Volcanic influences on terrestrial sedimentation. Geology 17:375–376CrossRefGoogle Scholar
  32. Thouret JC, Finizola A, Fornari M, Legeley-Padovani A, Suni J, Frechen M (2001) Geology of El Misti volcano near the city of Arequipa. Peru Geol Soc Am Bull 113(12):1593–1610CrossRefGoogle Scholar
  33. Thouret JC, Fabre D, Willinger M, Talon A. Pallares C, Bacconnet C, Bchir MA, Enjolras G, Heitz C, Cespedes X, Martelli K, Nagata M, (2012) Assessing Lahar and flood hazards as a contribution to risk management in the city of Arequipa, Peru. 12th Congress INTERPRAEVENT 2012 Grenoble/France—Extended Abstracts. www.interpraevent, Extended Abstracts, pp 390–391
  34. Tilling RI (2005) Volcano hazards. In: Marti J, Ernst GJE (eds) Volcanoes and the environment. Cambridge University Press, Cambridge, pp 55–89CrossRefGoogle Scholar
  35. Vallance JW (2000) Lahars. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp 601–616Google Scholar
  36. Vargas Franco R, Thouret JC, Delaite G, van Westen C, Sheridan MF, Siebe C, Marino J, Souriot T, Stinton A (2010) Mapping and assessing volcanic hazards and risks in the city of Arequipa, Peru, based on GIS techniques. In G. Groppelli & L. Viereck-Goette, eds.,’ Stratigraphy and Geology of volcanic areas’, Geol Soc Am Special Paper 464: 265–280Google Scholar
  37. Villavicencio G, Bacconnet C, Breul P, Boissier D, Espinace R (2011) Estimation of the variability of tailings dams properties in order to perform probabilistic assessment. Geotech Geol Eng 29(6):1073–1084CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos Pallares
    • 1
    • 2
    • 3
    Email author
  • Denis Fabre
    • 1
  • Jean-Claude Thouret
    • 4
  • Claude Bacconnet
    • 5
  • Juan Antonio Charca-Chura
    • 6
  • Kim Martelli
    • 4
  • Aurélie Talon
    • 5
  • Calixtro Yanqui-Murillo
    • 6
  1. 1.Chaire de GéotechniqueConservatoire National des Arts et MétiersParis Cedex 03France
  2. 2.Laboratoire GEOPS, UMR 8148Université de Paris-SudOrsayFrance
  3. 3.CNRSOrsayFrance
  4. 4.Laboratoire Magmas et Volcans CNRS UMR 6524 et IRD UR163PRES Clermont, Université Blaise PascalClermont-Ferrand CedexFrance
  5. 5.Institut Pascal CNRS UMR 6602, Polytech ClermontPRES Clermont, Université Blaise PascalAubièreFrance
  6. 6.Facultad de Ingeniería CivilUniversidad Nacional de San AgustínArequipaPeru

Personalised recommendations