Geotechnical and Geological Engineering

, Volume 30, Issue 3, pp 625–646 | Cite as

World Stress Map Database as a Resource for Rock Mechanics and Rock Engineering

  • Arno Zang
  • Ove Stephansson
  • Oliver Heidbach
  • Silke Janouschkowetz
Original paper


Knowledge of the in situ stress state is of key importance for rock engineering. We inform the reader about the World Stress Map (WSM) database and its application to rock mechanics and rock engineering purpose, and in particular the orientation of maximum horizontal stress. We discuss the WSM and the quality ranking system of stress orientation data. We show one example of discrete-measured and computed-smoothed stress orientations from central and northern Europe with respect to relative plate velocity trajectories. We give first insights into ongoing development of a second, more Quantitative World Stress Map database which compiles globally rock-type specific stress magnitudes versus depth. We discuss the vertical stress component, and the lateral stress coefficient versus depth for different rock types. We display stress magnitudes in 2D and 3D stress space, and investigate stress ratios in relation to depth, lithology and tectonic faulting regime.


Lithologic stress magnitudes Quality ranking system Quantitative World Stress Map (Q-WSM) Rock engineering Stress orientation Stress space World Stress Map (WSM) 



We would like to thank two anonymous reviewers for their valuable input. We appreciate the thorough reading from the oil industry perspective (reviewer 1), and comments from the rock mechanics and rock engineering perspective (reviewer 2). The first author was supported by the European Union funded project GEISER (Geothermal Engineering Integrating Mitigation of Induced Seismicity in Reservoirs, Grant agreement no.: 241321-2). He would like to thank Ernst Huenges and David Bruhn (both GFZ, Section 4.1 Reservoir Technology).


  1. Aadnoy BS, Hansen AK (2005) Bounds on in situ stress magnitudes improve wellbore stability analyses. Soc Petroleum Eng SPE J 10(2):115–120Google Scholar
  2. Addis MA, Hanssen TH, Yassir N, Willoughby DR, Enever J (1998) A comparison of leak-off test and extended leak-off test data for stress estimation. SOE/IRSM 47235. In: Proceedings of ISRM EUROCK98, vol 2, Trondheim, Norway, pp 131–140Google Scholar
  3. Amadei BS, Stephansson O (1997) Rock stress and its measurements. Chapman and Hall, LondonCrossRefGoogle Scholar
  4. Amadei BS, Savage WZ, Swolfs HS (1987) Gravititional stresses in anisotropic rock masses. Int J Rock Mech Min Sci Geomech Abstr 24:5–14CrossRefGoogle Scholar
  5. Angelier J (2002) Inversion of earthquake focal mechanism to obtain the seismotectonic stress IV—a new method free of choice among nodal planes. Geophys J Int 150:588–609CrossRefGoogle Scholar
  6. Aydan Ö (1995) The stress state of the Earth and the Earth’s crust due to gravitational pull. In: Daemen JJK, Schulz RA (eds) Proceedings of the 35th US symposium on rock mechanics, Lake Tahoe. AA Balkema, Rotterdam, pp 237–243Google Scholar
  7. Barton CA, Zoback MD, Burns KL (1988) In situ stress orientation and magnitude at the Fenton Hill geothermal site, New Mexico, determined from borehole breakouts. Geophys Res Lett 15(5):467–470CrossRefGoogle Scholar
  8. Baumgärtner J, Zoback MD (1989) Interpretation of hydraulic fracturing pressure-time records using interactive analysis methods. Int J Rock Mech Min Sci 26:461–470CrossRefGoogle Scholar
  9. Bell JS (1990) Investigating stress regimes in sedimentary basins using information from oil industry wireline logs and drilling records. In: Hurst A, Lovell MA, Morton AC (eds) Geological applications of wireline logs. Geological Society Special Publications No. 48, London, pp 305–325Google Scholar
  10. Bell JS (1996) Petro geoscience 2. In situ stresses in sedimentary rocks (part 2): applications of stress measurements. Geosci Can 23(3):135–153Google Scholar
  11. Bell JS, Gough DI (1979) Northeast-southwest compressive stress in Alberta: evidence from oil wells. Earth Planet Sci Lett 45:475–482CrossRefGoogle Scholar
  12. Bieniawski ZT (1984) Rock mechanics design in mining and tunnelling. AA Balkema, RotterdamGoogle Scholar
  13. Bird P (2003) An updated digital model for plate boundaries. Geochem Geophys Geosyst 4:1027–1079CrossRefGoogle Scholar
  14. Brown ET, Hoek E (1978) Trends in relationships between measured in situ stresses and depth. Int J Rock Mech Min Sci Geomech Abstr 15:211–215CrossRefGoogle Scholar
  15. Connolly P, Cosgrove J (1999) Prediction of static and dynamic fluid pathways within and around dilational jogs. In: McCaffrey KJW, Lonergan L, Wilkinson JJ (eds) Fractures, fluid flow and mineralization, vol 155. Special Publications: Geological Society, London, pp 105–121Google Scholar
  16. Cornet FH, Burlet D (1992) Stress field determination in France by hydraulic tests in boreholes. J Geophys Res 97:11829–11849CrossRefGoogle Scholar
  17. Couzens-Schultz BA, Chan AW (2010) Stress determination in active thrust belts: an alternative leak-off pressure interpretation. J Struct Geol 32:1061–1069CrossRefGoogle Scholar
  18. De Bree P, Walters JV (1989) Micro/Minifrac test procedures and interpretation for in situ stress determination. Int J Rock Mech Min Sci Geomech Abstr 26:515–521CrossRefGoogle Scholar
  19. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194CrossRefGoogle Scholar
  20. DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:425–478CrossRefGoogle Scholar
  21. Dolinar DR (2003) Variation of horizontal stresses and strains in mines in bedded deposits in the eastern and midwestern United States. In: 22nd international conference on ground control in mining, society for mining, metallurgy and exploration (SME), chapter 26 geotechnical planning, p 8Google Scholar
  22. Engelder T (1993) Stress regimes in the lithosphere. Princeton University Press, PrincetonGoogle Scholar
  23. Ervine WB, Bell JS (1987) Subsurface in situ stress magnitudes from oil-well drilling records: an example from the Venture area, offshore eastern Canada. Can J Earth Sci 24(9):1748–1759Google Scholar
  24. Fuchs K, Müller B (2001) World stress map of the Earth: a key to tectonic processes and technological applications. Naturwissenschaften 88:357–371CrossRefGoogle Scholar
  25. Gaarenstroom L, Tromp RAJ, de Jong MC, Brandenburg MA (1993) Overpressures in the Central North Sea: implications for trap integrity and drilling safety. In: Parker JD (ed) Geology of Northwest Europe, Proceedings of the 4th conference, pp 1305–1313Google Scholar
  26. Gough DI, Gough WI (1987) Stress near the surface of the Earth. Annu Rev Earth Planet Sci 15:545–566CrossRefGoogle Scholar
  27. Grünthal G, Stromeyer D (1994) The recent crustal stress field in Central Europe sensu lato and its quantitative modelling. Geologie en Mijnbouw 73:173–180Google Scholar
  28. Haimson BC (1975) The state of stress in the earth’s crust. Rev Geophys Space Phys 13:350–352CrossRefGoogle Scholar
  29. Haimson BC (1978) The hydrofracturing stress measuring method and recent field results. Int J Rock Mech Min Sci Geomech Abstr 15:167–178CrossRefGoogle Scholar
  30. Haimson BC (2007) Micromechanisms of borehole instability leading to breakouts in rock. Int J Rock Mech Min Sci Geomech Abstr 44:157–173Google Scholar
  31. Haimson BC, Cornet FC (2003) ISRM suggested method for rock stress estimation—part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF). Int J Rock Mech Min Sci 40:1011–1020CrossRefGoogle Scholar
  32. Haimson BC, Lee CF (1995) Estimating in situ stress conditions from borehole breakouts and core disking. In: Proceedings 8th ISRM congress, international workshop on rock stress measurement at great depth, Tokyo, Japan. Balkema, Rotterdam, pp 19–24Google Scholar
  33. Hakala M, Kuula H, Hudson JA (2007) Estimating the transversely isotropic elastic intact rock properties for in situ stress measurement data reduction: a case study of the Olkiluoto mica gneiss, Finland. Int J Rock Mech Min Sci 44:14–46CrossRefGoogle Scholar
  34. Hast N (1969) The state of stress in the upper part of the Earth’s crust. Tectonophys 8:169–211CrossRefGoogle Scholar
  35. Heidbach O, Reinecker J, Tingay M, Müller B, Sperner B, Fuchs K, Wenzel F (2007) Plate boundary forces are not enough: Second- and third-order stress patterns highlighted in the World Stress Map database. Tectonics 26:TC6014. doi: 10.1029/2007TC002133
  36. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2008) The 2008 release of the World Stress Map. Available online:
  37. Heidbach O, Tingay M, Barth A, Reinecker J, Kurfeß D, Müller B (2010) Global crustal stress pattern based on the 2008 World Stress Map database release. Tectonophys 482:3–15CrossRefGoogle Scholar
  38. Henk A (2008) Perspectives of geomechanical reservoir models—why stress is important. Eur Mag 4:1–5Google Scholar
  39. Hergert T, Heidbach O (2011) Geomechanical model of the Marmara Sea region—II. 3-D contemporary background stress field. Geophys J Int 185(3):1090–1102Google Scholar
  40. Herget G (1974) Ground stress determinations in Canada. Rock Mech 6:53–74CrossRefGoogle Scholar
  41. Herget G (1987) Stress assumptions for underground excavations in the Canadian shield. Int J Rock Mech Min Sci Geomech Abstr 24:95–97Google Scholar
  42. Hickman SH (1991) Stress in the lithosphere and the strength of active faults. Rev Geophys 29:759–775Google Scholar
  43. Hopkins CW (1997) The importance of in situ-stress profiles in hydraulic-fracturing applications. Soc Petroleum Eng SPE 38458:944–948Google Scholar
  44. Hubbert KM, Willis DG (1957) Mechanics of hydraulic fracturing. Petroleum Trans AIME T.P. 4597, 210:153–166Google Scholar
  45. Hudson JA, Harrison JP (2000) Engineering rock mechanics. Elsevier Science Ltd, KidlingtonGoogle Scholar
  46. Hudson JA, Cornet FH, Christiansson R (2003) ISRM suggested methods for rock stress estimation—part I: strategy for rock stress estimation. Int J Rock Mech Min Sci 40(7–8):991–998Google Scholar
  47. Isra J, Galybin AN (2010) Stress trajectories element method for stress determination from discrete data on principal directions. Eng Anal Boundary Elem 34:423–432 Google Scholar
  48. Ito T, Omura K, Ito H (2007) BABHY—a new strategy of hydrofracturing for deep stress measurements. Sci Drill Special Issue 1:113–116Google Scholar
  49. Kang H, Zhang X, Si L, Wu Y, Gao F (2010) In situ stress measurements and stress distribution characteristics in underground coal mines in China. Eng Geol 116:333–345CrossRefGoogle Scholar
  50. Kunze KR, Steiger RP (1991) Extended leak-off tests to measure in situ stress during drilling. In: Roegiers J-C (ed) Rock mechanics as a multidisciplinary science. Balkema, Rotterdam, pp 33–44Google Scholar
  51. Li Y, Schmitt DR (1998) Drilling-induced core fractures and in situ stress. J Geophys Res 103(B3):5225–5239Google Scholar
  52. Lin W, Yamamoto K, Ito H, Masago H, Kawamura Y (2008) Estimation of the minimum principal stress from extended leak-off tests onboard the Chikyu drilling vessel and suggestions for future test procedures. Sci Drill 6:43–47Google Scholar
  53. Lin W, Yeh C-H, Hung J-H, Haimson B, Hirono T (2010) Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault Drilling Project (TCDP). Tectonophys 482:82–91CrossRefGoogle Scholar
  54. Ljunggren C, Chang Y, Janson T, Christiansson R (2003) An overview of rock stress measurement methods. Int J Rock Mech Min Sci 40:975–989CrossRefGoogle Scholar
  55. Lund B, Zoback MD (1999) Orientation and magnitude of in situ stress to 6.5 km depth in the Baltic Shield. Int J Rock Mech Min Sci 36:169–190CrossRefGoogle Scholar
  56. McCutchen WR (1982) Some elements of a theory for in situ stress. Int J Rock Mech Min Sci Geomech Abstr 19:201–203CrossRefGoogle Scholar
  57. McGarr A (1980) Some constraints on levels of shear stress in the crust from observation and theory. J Geophys Res 85:6231–6238CrossRefGoogle Scholar
  58. McGarr A, Gay NC (1978) State of stress in the Earth’s crust. Ann Rev Earth Plan Sci 6:405–436CrossRefGoogle Scholar
  59. Moeck I, Backers T (2011) Fault reactivation potential as a critical factor during reservoir stimulation. First Break 29:73–80Google Scholar
  60. Mogi K (2007) Experimental rock mechanics. Geomechanics research series, vol 3. Taylor & Francis Group, LondonGoogle Scholar
  61. Morris A, Ferrill DA, Henderson DB (1996) Slip tendency analysis and fault reactivation. Geology 24:275–278CrossRefGoogle Scholar
  62. Müller B, Zoback ML, Fuchs K, Mastin L, Gregersen S, Pavoni N, Stephansson O, Ljunggren C (1992) Regional patterns of tectonic stress in Europe. J Geophys Res 97:11783–11803CrossRefGoogle Scholar
  63. Müller B, Wehrle V, Hettel S, Sperner B, Fuchs F (2003) A new method for smoothing oriented data and its application to stress data. In: M Ameen (ed) Fracture and in situ stress characterization of hydrocarbon reservoirs, vol 209. Special Publication: Geological Society, London, pp 107–126Google Scholar
  64. Nelson EJ, Chipperfield ST, Hillis RR, Gilbert J, McGowen J, Mildren SD (2007) The relationship between closure pressures from fluid injection tests and the minimum principal stress in strong rocks. Int J Rock Mech Min Sci 44:787–801CrossRefGoogle Scholar
  65. Raaen AM, Horsrud P, Kjorhold H, Okland D (2006) Improved routine estimation of the minimum horizontal stress component from extended leak-off tests. Int J Rock Mech Min Sci 43:37–48CrossRefGoogle Scholar
  66. Ranalli G, Chandler TE (1975) The stress field in the upper crust as determined from in situ measurements geol. Rundschau 64:653–674CrossRefGoogle Scholar
  67. Rasouli V, Pallikathekathil ZJ, Mawuli E (2011) The influence of perturbed stresses near faults on drilling strategy: a case study in Blacktip field, North Australia. J Petr Sci Eng 76:37–50CrossRefGoogle Scholar
  68. Roth F, Fleckenstein P (2001) Stress orientations found in North-east Germany differ from the West European trend. Terra Nova 13:289–296CrossRefGoogle Scholar
  69. Rummel F (1979) Stresses in the upper crust as derived from in situ stress measurements—a review. Progress in earthquake prediction research. Vieweg, Braunschweig, pp 391–405Google Scholar
  70. Rummel F (1986) Stresses and tectonics of the upper continental crust, a review. In: Stephansson O (ed) Rock stress and rock stress measurements. Centek Publishers, Lulea, pp 177–186Google Scholar
  71. Rummel F (ed) (2005) Rock mechanics with emphasis on stress. AA Balkema Publishers, LeidenGoogle Scholar
  72. Rummel F, Möhring-Erdmann G, Baumgärtner J (1986) Stress constraints and hydro-fracturing stress data for the continental crust. PAGEOPH 124(4/5):875–895CrossRefGoogle Scholar
  73. Sano O, Ito H, Hirata A, Mizuta Y (2005) Review of methods of measuring stress and its variations. Bull Earthq Res Inst Univ Tokyo 80:87–103Google Scholar
  74. Savage WZ, Swolfs HS, Amadei B (1992) On the state of stress in the near surface of the Earth’s crust. PAGEOPH 138:207–228CrossRefGoogle Scholar
  75. Sbar ML, Sykes LR (1973) Contemporary compressive stress and seismicity in eastern North America, an example of intraplate tectonics. Geol Soc Am Bull 84:1861–1882CrossRefGoogle Scholar
  76. Scholz CH (2002) The mechanics of earthquakes and faulting, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  77. Sen Z, Sadagah BH (2002) Probabilistic horizontal stress ratios in rock. Math Geol 34(7):845–855CrossRefGoogle Scholar
  78. Shen B (2008) Borehole breakouts and in situ stresses In: Potvin Y, Carter J, Dyskin A, Jeffrey J (eds) SHIRMS 2008. Australian Centre for Geomechanics, Perth, pp 407–418Google Scholar
  79. Sheorey PR (1994) A theory for in situ stresses in isotropic and transversely isotropic rock. Int J Rock Mech Min Sci Geomech Abstr 31:23–34CrossRefGoogle Scholar
  80. Sperner B, Müller B, Heidbach O, Delvaux D, Reinecker J, Fuchs K (2003) Tectonic stress in the Earth’s crust: advances in the World Stress Map project. In: DA Nieuwland (ed) New insights in structural interpretation and modelling. Geological Society, London, Spec Pub Ser 212, pp 101–116Google Scholar
  81. Steinberger B, Torsvik TH (2008) Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452:620–623CrossRefGoogle Scholar
  82. Stephansson O, Särkkä P, Myrvang A (1986) State of stress in Fennoscandia. In: Proceedings international symposium on rock stress and rock stress measurements, Stockholm. Centek Publisher, Lulea, pp 21–32Google Scholar
  83. Sykes LR, Sbar ML (1973) Intraplate earthquakes, lithospheric stresses and the driving mechanism of plate tectonics. Nature 245:298–302CrossRefGoogle Scholar
  84. Tan CP, Willoughby DR, Zhou S, Hillis RR (1993) An analytical method for determining horizontal stress bounds from wellbore data. Int J Rock Mech Min Sci Geomech Abstr 30(7):1103–1109CrossRefGoogle Scholar
  85. Thiercelin MJ, Plumb RA (1994) Core-based prediction of lithologic stress contrasts in East Texas formations. SPE Form Eval Pap SPE 21847:251–258Google Scholar
  86. Tingay M, Hillis RR, Morley CK, Swarbrick E, Drake SJ (2005a) Present-day stress orientation in Brunei: a snapshot of ‘prograding tectonic’ in a Tertiary delta. J Geol Soc Lond 162:39–49CrossRefGoogle Scholar
  87. Tingay M, Müller B, Reinecker J, Heidbach O, Wenzel F, Fleckenstein P (2005b) Understanding tectonic stress in the oil patch: The World Stress Map Project. The Leading Edge, pp 1276–1282Google Scholar
  88. Tingay MRP, Hillis RR, Morley CK, King RC, Swarbrick ER, Damit AR (2009) Present-day stress and neotectonics of brunei: implications for petroleum exploration and production. AAPG Bull 93:75–100CrossRefGoogle Scholar
  89. Tonon F, Amadei B (2003) Stresses in anisotropic rock masses: an engineering perspective building on geological knowledge. Int J Rock Mech Min Sci 40:1099–1120CrossRefGoogle Scholar
  90. van Heerden WL (1976) Practical application of the CSIR triaxial stress cell for rock stress measurements. In: Proceedings ISRM symposium on investigation of stress in rock, advances in stress measurements. The Institution of Engineers, Sydney, Australia, pp 1–6Google Scholar
  91. Voigth B (1969) Evolution of North Atlantic Ocean: relevance of rock-pressure measurements North Atlantic—geology and continental drift. AAPG Mem 12:955–962. Am Assoc Petrolium GeologistsGoogle Scholar
  92. White AJ, Traugott MO, Swarbrick RE (2002) The use of leak-off tests as a means of predicting minimum in situ stresses. Petroleum Geosci 8:189–193CrossRefGoogle Scholar
  93. Wileveau Y, Cornet FH, Desroches J, Blümling P (2007) Complete in situ stress determination in the argillite sedimentary formation. Phys Chem Earth 32:866–878CrossRefGoogle Scholar
  94. Yamamoto M (2003) Implementation of the extended leak-off test in deep wells in Japan. In: Sugawara K (ed) Proceedings of 3rd international symposium on rock stress. Balkema, Rotterdam, pp 225–229Google Scholar
  95. Zang A, Stephansson O (2010) Stress field of the Earth’s crust. Springer Science + Business Media, DordrechtCrossRefGoogle Scholar
  96. Zoback ML (1992) First- and second-order patterns of stress in the lithosphere: the World Stress Map project. J Geophys Res 97:11,703–11,728Google Scholar
  97. Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, New YorkCrossRefGoogle Scholar
  98. Zoback ML, Zoback MD (1980) State of stress in conterminous United States. J Geophys Res 85:6113–6156CrossRefGoogle Scholar
  99. Zoback ML, Zoback MD (1989) Tectonic stress field of the conterminous United States. In: Pakiser LC, Mooney WD (eds) Geophysical framework of the continental united states, Boulder, Colorado, Geol Soc Am Mem 172:523–539Google Scholar
  100. Zoback MD, Zoback ML (1991) Tectonic stress field of North America and relative plate motions. In: Slemmons DB, Engdahl ER, Zoback MD, Blackwell DD (eds) Neotectonics of North America, decade map, vol I., Geological Society of AmericaBoulder, Colorado, pp 339–366Google Scholar
  101. Zoback ML, Zoback MD, Adams J, Assumpcao M, Bell S, Bergman EA, Blümling P, Brereton NR, Denham D, Ding J, Fuchs K, Gay N, Gregersen S, Gupta HK, Gvishiani A, Jacob K, Klein R, Knoll P, Magee M, Mercier JL, Mueller BC, Paquin C, Rajendran K, Stephansson O, Suarez G, Suter M, Udias A, Xu ZH, Zhizhin M (1989) Global patterns of tectonic stress. Rev Article Nat 341:291–298Google Scholar
  102. Zoback MD, Barton CA, Brudy M, Castillo DA, Finkbeiner T, Grollimund BR, Moos DB, Peka P, Ward CD, Wiprut DJ (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40:1049–1076CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Arno Zang
    • 1
  • Ove Stephansson
    • 1
  • Oliver Heidbach
    • 1
  • Silke Janouschkowetz
    • 2
  1. 1.Department 2: Physics of the Earth, Section 2.6 Seismic Hazard and Stress FieldGerman Research Center for Geosciences (GFZ)PotsdamGermany
  2. 2.R+V Versicherung AG, ReinsuranceUnderwriting SupportWiesbaden Germany

Personalised recommendations