Advertisement

Geotechnical and Geological Engineering

, Volume 25, Issue 3, pp 283–301 | Cite as

Single piles under horizontal loads in sand: determination of PY curves from the prebored pressuremeter test

  • Ali BouafiaEmail author
Original Paper

Abstract

Lateral load-deflection behaviour of single piles is often analysed in practice on the basis of methods of load-transfer PY curves. The paper is aimed at presenting the results of the interpretation of five full-scale horizontal loading tests of single instrumented piles in two sandy soils, in order to define the parameters of PY curves, namely the initial lateral reaction modulus and the lateral soil resistance, in correlation with the pressuremeter test parameters. PY curve parameters were found varying as a power of lateral pile/soil stiffness, on the basis of which hyperbolic PY curves in sand were proposed. The predictive capabilities of the proposed PY curves were assessed by predicting the soil/pile response in full-scale tests as well as in centrifuge tests and a very good agreement was found between the computed deflections and bending moments, and the measured ones. Small-sized database of full-scale pile loading tests in sand was built and a comparative study of some commonly used PY curve methods was undertaken. Moreover, it was shown that the load-deflection curves of these test piles may be normalised in a practical form for an approximate evaluation of pile deflection in a preliminary stage of pile design. At last, a parametric study undertaken on the basis of the proposed PY curves showed the significant influence of the lateral pile/soil stiffness on the non-linear load-deflection response.

Keywords

Lateral loading test Lateral reaction modulus PY curves Pressuremeter test Sand Single pile 

List of symbols and units

B

diameter or frontal width of the pile (m)

D

embedded length of the pile (m)

De

effective pile length (m)

E

elastic soil modulus (MPa)

e

excentricity of lateral load (m)

Ec

characteristic soil modulus (MPa)

Em

first load pressuremeter modulus (MPa)

Er

reload pressuremeter modulus (MPa)

Eti

initial lateral reaction modulus (MPa)

EpIp

flexural pile stiffness (MN m2)

F

tangential lateral reaction (kN/m)

Fl

limit tangential lateral reaction or tangential lateral resistance (kN/m)

Gr

pressuremeter shear modulus (G r  = E r/[2(1 + ν)]) (MPa)

H

lateral load applied on the pile top (kN)

Id

density index (%)

K

pile/soil compressibility

Kr

lateral pile/soil stiffness

L

tangential dimension of the pile section (parallel to H) (m)

L0

transfer length or elastic length (m)

M

bending moment at a given depth (kN m)

M0

bending moment applied to the pile top (kN m)

NH

rate of increase of E ti with depth in Gibson’s soil (MPa/m)

Nspt

N value of the SPT (blow counts/30 cm)

P

lateral soil reaction at a given depth (kN/m)

Pu

lateral soil resistance or limit lateral reaction (kN/m)

pf

pressuremeter creep pressure (kPa)

pl

limit pressuremeter pressure (kPa)

p*

net limit pressuremeter pressure (kPa)

\( P_{le}^{*}\)

net equivalent limit pressuremeter pressure (kPa)

p0

at-rest lateral earth pressure (kPa)

Q

frontal lateral reaction (kN/m)

qc

cone penetration resistance (MPa)

qs

limit skin friction along the pile shaft (kPa)

R

least-squares regression coefficient (%)

R0

initial radius of pressuremeter borehole (m)

ΔR

increase in PMT borehole radius (mm)

Sf, St

shape factors

Y

lateral displacement or deflection at a given depth (mm)

Y0

pile deflection at ground level (mm)

Yref.

reference deflection or threshold of lateral soil resistance P u (mm)

z

depth with respect to the ground level (m)

zc

critical depth (m)

λ

rate of linear increase of E m with depth in Gibson’s soil (MPa/m)

μ

rate of linear increase of \( P_{l}^{*} \) with depth in Gibson’s soil (kPa/m)

η

lateral resistance factor

ν

Poisson’s ratio

ψ

ratio E ti to E m

ξ

ratio P u to \( P_{L}^{*} B \)

Notes

Acknowledgments

The study reported herein is supported by the Algerian ministry of higher education and research MESRS within the scope of the project COPIFOR (COmportement des PIeux FORés) under the code J0901/04/02/2000.

References

  1. Atukorala U, Byrne PM (1984) Prediction of P-Y curves from pressuremeter tests and finite element analyses. Soil mechanics series no. 66, Department of civil engineering, University of British Coulombia, July 1984, pp 34Google Scholar
  2. Baguelin F (1982) Règles de calcul des fondations à partir de l’essai au pressiomètre autoforeur (in French). In: Proceedings of the symposium La pressiométrie et ses applications en mer, Paris, 19–20 April 1982, pp 359–371, editions LCPC-IFPGoogle Scholar
  3. Baguelin F, Jézéquel JF (1972) Etude expérimentale du comportement des pieux chargés latéralement (in French), Annales de l’ITBTP No. 297, 1972, pp 155–200Google Scholar
  4. Baguelin F, Frank R, Said Y (1977) Theoretical study of lateral reaction mechanism of piles. Geotechnique, vol. 27, No. 3Google Scholar
  5. Baguelin F, Jézéquel J-F, Shields D-H (1978) The pressuremeter and foundation engineering. Series on rock and soil mechanics, vol. 2, No. 4, 1st edn, Trans Tech Publications, Germany, p 615Google Scholar
  6. Baguelin F, Frank R, Jézéquel JF (1990) The Ménard pressuremeter test and the behaviour of laterally loaded piles in sand. In: Proceedings of ISP3 the 3rd international symposium on pressuremeters. Oxford University, 2–6 April 1990, pp 381–391Google Scholar
  7. Beikae M, Pyke R (1984) A new solution for the resistance of single piles to lateral loads. In: Laterally loaded deep foundations—analysis and performance, ASTM Special Technical Publications No. 835, 1984, pp 21–34Google Scholar
  8. Bouafia A (1987) Modélisation en centrifugeuse-Pieux isolés sous charges horizontales (in French). DEA thesis, University of Nantes, France, pp 67Google Scholar
  9. Bouafia A (1990) Modélisation des pieux chargés latéralement en centrifugeuse. Doctorate thesis, University of Nantes, France, pp 267Google Scholar
  10. Bouafia A, Garnier J (1991) Experimental study of P-Y curves for piles in sand. In: Proceedings of the international conference CENTRIFUGE’91, Boulder, Colorado, 13–14 Juin 1991, pp 261–268, A A Balkema, AmsterdamGoogle Scholar
  11. Bouafia A, Garnier J, Levacher D (1991) Comportement d’un pieu isolé chargé latéralement dans le sable (in French). In: Proceedings of the international symposium deep foundations, Mars 1991, Paris, pp 129–136, Presses de l’ENPCGoogle Scholar
  12. Bouafia A, Bouguerra A (1995) Modélisation en centrifugeuse du comportement d’un pieu flexible chargé horizontalement à proximité d’une pente (in French). Can Geotech J 32:324–335Google Scholar
  13. Bouafia A, Bouguerra A (1996) Effet de la proximité du talus sur un pieu court et rigide chargé horizontalement (in French). Fr Geotech J RFG No 75, 2e trimestre 1996, pp 47–56Google Scholar
  14. Bouafia A (1997) Etude en centrifugeuse du comportement d’un pieu chargé horizontalement (in French). In: Proceedings of the 14th ICSMFE, 6–12 September, A.A. Balkema, Amsterdam, pp 771–776Google Scholar
  15. Bouafia A (1998) Experimental analysis of large lateral displacements of piles in centrifuge. In: Proceedings of the 4th international conference on case histories in geotechnical engineering. St-Louis, Missouri, 8–15 March 1998, Paper no. 1.12Google Scholar
  16. Bouafia A (2002a) Analysis of lateral reaction modulus for piles in sand from CPT test. In: Proceedings of the international symposium PARAM’02, Paris, 2–3 September 2002, Presses de l’ENPCGoogle Scholar
  17. Bouafia A (2002b) Response of a flexible pile under lateral loads in dense sand in centrifuge. In: Canadian Geotechnical Society (ed) Proceedings of ICPMG’02 international conference on physical modelling in geotechnics, St-John’s, Newfoundland, Canada July 10–12 2002cGoogle Scholar
  18. Bowles JE (1997) Foundation analysis and design, 5th edn. Mc Graw-Hill, New YorkGoogle Scholar
  19. Briaud JL (1986) Pressuremeter and foundation design. In: Clemence SP (ed) Proceedings of IN-SITU’86 use of in-situ tests in geotechnical engineering, Geotechnical Special Publication No. 6, Virginia Tech., Blacksburg, pp 74–115Google Scholar
  20. Briaud JL, Smith TD, Meyer B (1982) Calcul des pieux chargés latéralement à l’aide des résultats pressiométriques (in French). In: Proceedings of the international symposium PMT and its marine applications, Paris, 19–20 April 1982, editions LCPC-IFP, pp 389–406Google Scholar
  21. Briaud JL, Smith TD, Tucker LM (1985) A pressuremeter method for laterally loaded piles. In: Proceedings of the international conference on soil mechanics and foundation engineering, San Francisco 1985, vol 3, pp 1353–1356Google Scholar
  22. Briaud JL, Moore BH, Mitchell GB (1989) Analysis of pile load tests at Lock and Dam 26. In: FH Kulhaway (ed) Proceedings of the congress foundation engineering—current principles and practices, Evanston, June 25–29, 1989, Evanston, Illinois, vol 2, ASCE, pp 925–942Google Scholar
  23. Canépa Y, Depresle D, Leipp J, Smirr JL (1987) Essais de sollicitations horizontales de tubes de différents diamètres fichés dans une fosse de sable de Fontainebleau (in French). Testing report to the LREP, Code F.A.E.R 1.15.06.6, file 8670, 32 pGoogle Scholar
  24. Carayannacon-Trézos, Baguelin F, Frank R (1979) Réaction latérale des pieux: effets de forme et effets tridimensionnels (in French)”. Bulletin des LPC No. 104, Nov/Dec 1979Google Scholar
  25. Douglas DJ, Davis EH (1964) The movements of buried footings due to moment and horizontal load and the movement of anchor plates. Geotechnique, vol 14Google Scholar
  26. Dunand M (1981) Etude expérimentale du comportement des fondations soumises au renversement (in French). Doctorate thesis, University of Grenoble IMGGoogle Scholar
  27. Duncan JM, Chung-Chang (1970) Nonlinear analysis of stress and strain in soils. In: Proceedings of the ASCE. J Soil Mech Found Div 96:1629–1654Google Scholar
  28. Frank R (1984) Etudes théoriques des fondations profondes et d’essais en place par autoforage dans les LPC et résultats pratiques (in French). Research report to the LCPC, No. 128Google Scholar
  29. Frank R, Jézéquel JF (1989) La résistance latérale des pieux (in French), LCPC’s days on Soil Mechanics, Saint-Brieuc, 20–22 June 1989, 36 pGoogle Scholar
  30. Gambin M (1979) Calculation of foundations subjected to horizontal forces using pressuremeter data. Sols-Soils No. 30/31 1979, pp 17–59Google Scholar
  31. Garassino A (1976) Soil modulus for laterally loaded piles. In: Proceedings of the 4th European Conference on Soil Mechanics and Foundations Engineering, Vienna, 1976Google Scholar
  32. Georgiadis M, Anagnastopoulos C, Saflekou S (1992) Centrifugal testing of laterally loaded piles. Can Geotech J 259:208–216Google Scholar
  33. Jézéquel JF (1988) Résistance latérale des pieux Le-Rheu- Prévision du comportement des pieux (in French). Prelimnary testing report, code F.A.E.R 1.05.01.7, LRPC de St-Brieuc, January 1988, 43 pGoogle Scholar
  34. King GJW (1994) The interpretation of data from tests on laterally loaded piles. In: Proceedings of the international conference CENTRIFUGE’94 on physical modelling in centrifuge, 31 August–2 September, Singapore, pp 515–520Google Scholar
  35. MELT (Ministère de l’équipement, du logement et du transport) (1993) Règles techniques de conception te de calcul des fondations des ouvrages de génie civil, Fascicule-62, titre-5 (in French), Paris, 182 pGoogle Scholar
  36. Ménard L, Gambin M, Bourdon G (1969) Méthode générale de calcul d’un rideau ou pieu sollicité horizontalement en fonction des résultats pressiométriques (in French), Sols/Soils vol 1, No. 20/23, 1969, pp 16–28Google Scholar
  37. Ménard L (1971) Le tassement des fondations et les techniques pressiométriques- Bilan après 10 de résultats expérimentaux (in French), Annales de l’ITBTP, décembre 1971Google Scholar
  38. Meyer BJ, Reese LC (1979) Analysis of single piles under lateral loading. Research report 244–1, Project 3-5-78-244, Centre for transportation research, The University of Texas, 157 pGoogle Scholar
  39. Mezazigh S (1995) Etude expérimentale de pieux chargés latéralement: Proximité d’un talus et effet de groupe (in French). Doctorate thesis, University of Nantes, France, 272 pGoogle Scholar
  40. Olham D (1983) Lateral loads tests on piles. MSCE thesis, University of ManchesterGoogle Scholar
  41. O’Neill MW, Murchisson JM (1983) An evaluation of P-Y relationships in sands, Report to the American Petroleum Institute (PRAC 82–41–1), May 1983, research report No. GT-DF02–83, 122 pGoogle Scholar
  42. Poulos HG (1971) Behaviour of laterally loaded piles: I-Single piles, In: Proceedings of the American Society of Civil Engineers, vol 97, No. Sm5, May 1971, pp 711–731Google Scholar
  43. Poulos HG, Carter JP, Small JC (2001) Foundations and retaining structures-Research and practice. Report to the 15th international conference on soil mechanics and geotechnical engineering, 27–31 August 2001, Istanbul, vol 4, pp 2527–2606Google Scholar
  44. Reese LC (1971) The analysis of piles under lateral loading. In: Proceedings of the symposium interaction structure-foundation, University of Birmingham, 1971Google Scholar
  45. Reese L, Matlock H (1977) Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth. In: Proceedings of the 8th Texas conference on Soil Mechanics and Foundations Engineering, Austin, September 1956Google Scholar
  46. Remaud D (1999) Pieux sous charges latérales-Etude expérimentale de l’effet du groupe (in Franch). Doctorate thesis, University of Nantes, France, 303 pGoogle Scholar
  47. Robertson PK, Hughes JMO, Campanella RG (1984) Design of laterally loaded displacement piles using a driven pressuremeter. In: Laterally loaded deep foundations—analysis and performance, ASTM Special Technical Publications No. 835, 1984, pp 229–238Google Scholar
  48. Robertson PK, Campanella RG, Brown PT (1985) Design of axially and laterally loaded piles using in-situ tests: a case history. Can Geotech J 22:518–527Google Scholar
  49. Townsend F, Mc Vay (1997) Prediction and evaluation of a laterally loaded pile group at Roosevelt bridge. Report submitted to Florida department of transportation, No. WPI 0510663, March 1997, 381 pGoogle Scholar
  50. Smith TD (1987) Friction mobilisation F-Y curves for laterally loaded piles from the pressuremeter. In: Proceedings of the international symposium on predictions and performance in geotechnical engineering, Calgary, Canada, 17–19 June 1987, A. A. Balkema, Amsterdam, pp 89–95Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  1. 1.Department of civil engineeringUniversity of BlidaR. P BlidaAlgeria

Personalised recommendations