Advertisement

Geotechnical & Geological Engineering

, Volume 24, Issue 4, pp 871–888 | Cite as

A new rock mass failure criterion for biaxial loading conditions

  • P. H. S. W. Kulatilake
  • Jinyong Park
  • Bwalya Malama
Article

Abstract

To simulate brittle rocks, a mixture of glastone, sand and water was used as a model material. Thin galvanized sheets of thickness 0.254 mm were used to create joints in blocks made out of the model material. To investigate the failure modes and strength, both the intact material blocks as well as jointed model material blocks of size 35.6 × 17.8 × 2.5 cm having different joint geometry configurations were subjected to uniaxial and biaxial compressive loadings. A new intact rock failure criterion is proposed at the 3-D level. This criterion is validated for biaxial loading through laboratory experimental results obtained on intact model material blocks. Results obtained from both the intact and jointed model material blocks are used to develop a strongly non-linear new rock mass failure criterion for biaxial loading. In this failure criterion, the fracture tensor component is used to incorporate the directional effect of fracture geometry system on jointed block strength. The failure criterion shows the important role, the intermediate principal stress plays on rock mass strength.

Keywords

anisotropy biaxial loading fracture tensor intermediate principal stress rock mass failure criteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, N. R., Lien, R., Lunde, J. 1974Engineering classification of rock masses for the design of tunnel supportRock Mechanics Rock Engineering10154Google Scholar
  2. Bieniawski, Z. T. (1976) Rock mass classification in rock engineering. In Exploration for Rock Engineering, Proc. of the Symp. (ed. Z.T. Bieniawski), Cape Town, Balkemia, 1, pp. 97–106.Google Scholar
  3. Bieniawski, Z. T. 1989Engineering Rock Mass ClassificationsWileyNew YorkGoogle Scholar
  4. Bieniawski, Z. T., Heerden, W.L. 1975The significance of in situ tests on large rock specimensInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts12101103CrossRefGoogle Scholar
  5. Brown, E. T. 1970Strength of models of rock with intermittent jointsJournal of Soil Mechanics Found. Div. ASCE9619351949Google Scholar
  6. Brown, E. T. 1974Fracture of rock under uniform biaxial compression, Advances in Rock MechanicsProc. of the 3rd Congress, International Society for Rock Mechanics, Denver2A111117Google Scholar
  7. Cundall, P. A. 1988Formulation of a three-dimensional distinct element model – part 1. A scheme to detect and represent contacts in a system composed of many polyhedral blocksInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts25107116CrossRefGoogle Scholar
  8. Drucker, D., Prager, W. 1952Soil mechanics and plastic analysis or limit designQuarterly of Applied Mathematics10157165Google Scholar
  9. Einstein, H. H., Hirschfeld, R.C. 1973Model studies on mechanics of jointed rockJournal of Soil Mechanics Found. Div. ASCE99229248Google Scholar
  10. Goodman, R. E., Taylor, R.L., Brekke, T.L. 1968A model for the mechanics of jointed rockProceedings of the American Society of Civil Engineers94637659Google Scholar
  11. Heuze, F. E. 1980Scale effects in the determination of rock mass strength and deformabilityRock Mechanics and Rock Engineering12167192Google Scholar
  12. Hoek, E., Brown, E. T. 1980Empirical strength criterion for rock massesJournal of Geotechnical Engineering Division: ASCE10610131035Google Scholar
  13. Hoek, E., Brown, E. T. 1997Practical estimates of rock mass strengthInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts3411651186CrossRefGoogle Scholar
  14. Kulatilake, P. H. S. W. 1985Estimating elastic constants and strength of discontinuous rockJournal of Geotechnical Engineering: ASCE111847864Google Scholar
  15. Kulatilake, P. H. S. W. 1998Software manual for FRACNTWK – A computer package to model discontinuity geometry in rock massesUniversity of ArizonaTucson, ArizonaTechnical Report submitted to Metropolitan Water District of Southern CaliforniaGoogle Scholar
  16. Kulatilake, P. H. S. W., Wang, S., Stephansson, O. 1993aEffect of finite size joints on the deformability of jointed rock in three dimensionsInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts30479501CrossRefGoogle Scholar
  17. Kulatilake, P. H. S. W., Wathugala, D. N., Stephansson, O. 1993bJoint network modelling with a validation exercise in Stripa mine SwedenInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts30502526Google Scholar
  18. Kulatilake, P. H. S. W., Ucpirti, H., Stephansson, O. 1994Effect of finite size joints on the deformability of jointed rock at the two dimensional levelCanadian Geotechnical Journal31364374CrossRefGoogle Scholar
  19. Kulatilake, P. H. S. W., He, W., Um, J., Wang, H. 1997A physical model study of jointed rock mass strength under uniaxial compressive loadingInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts34692693(abstract), full paper on CD ROM, 10 manuscript pagesCrossRefGoogle Scholar
  20. Kulatilake, P. H. S. W., Liang, J., Gao, H. 2001Experimental and numerical simulations of jointed rock block strength under uniaxial loadingASCE Journal of Engineering Mechanics12712401247CrossRefGoogle Scholar
  21. Kupfer, H., Hilsdorf, H. K., Rusch, H. 1969Behavior of concrete under biaxial StressesJournal of American Concrete Institute66656666Google Scholar
  22. Ladanyi, B. and Archambault, G. (1980) Direct and indirect determination of shear strength of a jointed rock mass, Report No. 80–25, Society of Mining Engineers of AIME for presentation at the AIME Annual Meeting, Las Vegas, Nevada, 1980. Feb. 24–28.Google Scholar
  23. Liu, T. C. Y., Nilson, A. H., Slate, F. O. 1972Stress–strain response of fracture of concrete in uniaxial and biaxial compressionJournal of the American Concrete Institute69291295Google Scholar
  24. Mogi, K. 1967Effect of intermediate principal stress on rock failureJournal of Geophysical Research7251175131CrossRefGoogle Scholar
  25. Mogi, K. 1971Fracture and flow of rocks under high triaxial compressionJournal of Geophysical Research7612551269Google Scholar
  26. Taylor, M. A., Jain, A. K., Ramey, M. R. 1972Path dependent biaxial compression testing of an all-lightweight aggregate concreteJournal of the American Concrete Institute69758764Google Scholar
  27. Oda, M. 1982Fabric tensor for discontinuous geological materialsSoils and Foundations2236108Google Scholar
  28. Wiebols, G., Cook, N. 1968An energy criterion for the strength of rock in polyaxial compressionInternational Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts5529549CrossRefGoogle Scholar
  29. Zhou, S. 1994A program to model the initial shape and extent of borehole breakoutComputational Geosciences2011431160CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • P. H. S. W. Kulatilake
    • 1
  • Jinyong Park
    • 1
  • Bwalya Malama
    • 1
  1. 1.Department of Materials Science & Engineering, Geological Engineering ProgramUniversity of ArizonaTucsonUSA

Personalised recommendations