Advertisement

Geotechnical & Geological Engineering

, Volume 24, Issue 4, pp 1089–1102 | Cite as

Visualization of rock mass classification systems

  • Ming Cai
  • Peter Kaiser
Technical Note

Abstract

A rock mass classification system is intended to classify and characterize the rock masses, provide a basis for estimating deformation and strength properties, supply quantitative data for mine support estimation, and present a platform for communication between exploration, design and construction groups. In most widely used rock mass classification systems, such as RMR and Q systems, up to six parameters are employed to classify the rock mass. Visualization of rock mass classification systems in multi-dimensional spaces is explored to assist engineers in identifying major controlling parameters in these rock mass classification systems. Different visualization methods are used to visualize the most widely used rock mass classification systems. The study reveals that all major rock mass classification systems tackle essentially two dominant factors in their scheme, i.e., block size and joint surface condition. Other sub-parameters, such as joint set number, joint space, joint surface roughness, alteration, etc., control these two dominant factors. A series two-dimensional, three-dimensional, and multi-dimensional visualizations are created for RMR, Q, Rock Mass index RMi and Geological Strength Index (GSI) systems using different techniques. In this manner, valuable insight into these rock mass classification systems is gained.

Keywords

block volume joint jointed rock mass multi-dimension rock classification visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton, N. R., Lien, R., Lunde, J. 1974Engineering classification of rock masses for the design of tunnel supportRock Mech.6189239CrossRefGoogle Scholar
  2. Bieniawski, Z. T. 1973Engineering classification of jointed rock massesTrans. S. Afr. Inst. Civ. Eng.15335344Google Scholar
  3. Bieniawski Z. T. (1976) Rock mass classification in rock engineering, in: Proceedings of the Symposium on Exploration for Rock Engineering, Cape Town, Balkema, Vol. 1, pp. 97–106Google Scholar
  4. Bieniawski, Z. T. 1989Engineering rock mass classificationsWileyNew YorkGoogle Scholar
  5. Cai, M., Kaiser, P.K., Uno, H., Tasaka, Y., Minami, M. 2004Estimation of rock mass strength and deformation modulus of jointed hard rock masses using the GSI systemInt. J. Rock Mech. Min. Sci.41319CrossRefGoogle Scholar
  6. Feiner, S. and Beshers, C. (1990) Worlds within worlds: metaphors for exploring n-dimensional virtual worlds, in: Proceedings of the 3rd Annual ACM Symposium on User Interface Software and Technology (UIST’90), Snowbird, UT, USA, pp. 76–83Google Scholar
  7. Hashash, Y., Wotring, D., Yao, J., Lee, J., Fu, Q. 2002Visual framework for development and use of constitutive modelsInt. J. Numer. Anal. Meth. Geomech.2614931513CrossRefGoogle Scholar
  8. Hoek, E., Brown, E. T. 1980Empirical strength criterion for rock massesJ. Geotech. Eng. Div, ASCE10610131035Google Scholar
  9. Hoek, E. and Brown, E. T. (1988) The Hoek–Brown failure criterion – a 1988 update, in Rock engineering for underground excavations, in: Proceedings of the 15th Canadian Rock Mechanical Symposium, Toronto, Canada, University of Toronto, Toronto, pp. 31–38Google Scholar
  10. Hoek, E., Brown, E. T. 1997Practical estimates of rock mass strengthInt. J. Rock Mech. Min. Sci.3411651186CrossRefGoogle Scholar
  11. Hoek, E. and Brown, E. T. (1988) The Hoek–Brown failure criterion – a 1988 update, in Rock engineering for underground excavations, in: Proceedings of the 15th Canadian Rock Mechanical Symposium, Toronto, Canada, University of Toronto, Toronto, pp. 31–38Google Scholar
  12. Hoek, E., Kaiser, P. K. and Bawden, W. F. (1995) Support of Underground Excavations in Hard Rock, A.A. BalkemaGoogle Scholar
  13. Jeremie, B., Scheuermann, G., Frey, J., Yang, Z., Hamann, B., Joy, K. I., Hagen, H. 2002Tensor visualizations in computational geomechanicsInt. J. Numer. Anal. Meth. Geomech.26925944CrossRefGoogle Scholar
  14. Palmstrøm, A. 1996aCharacterizing rock masses by the RMi for use in practical rock engineering, Part1: The development of the rock mass index (RMi)Tunnelling and Underground Space Technol11175188CrossRefGoogle Scholar
  15. Palmstrøm, A. 1996bCharacterizing rock masses by the RMi for use in practical rock engineering, Part2: Some practical applications of the rock mass index (RMi)Tunnelling and Underground Space Technol11287303CrossRefGoogle Scholar
  16. Schroeder, R. (1996) Possible Worlds: The Social Dynamic of Virtual Reality Technology, Westview Press. (HarperCollins Publishers, Inc.)Google Scholar
  17. Sen, Z., Sadagah, B. H. 2003Modified rock mass classification system by continuous ratingEng. Geol.67269280CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Geomechanics Research Centre, MIRARCOLaurentian UniversitySudburyCanada

Personalised recommendations