Nutrient Cycling in Agroecosystems

, Volume 116, Issue 1, pp 57–69 | Cite as

Intensive long-term monitoring of soil organic carbon and nutrients in Northern Germany

  • Rainer NergerEmail author
  • Karen Klüver
  • Eckhard Cordsen
  • Nicola Fohrer
Original Article


Since 2003, the regional long-term soil monitoring network (SMN) Schleswig–Holstein (SH) includes an intensive monitoring program (I-BDF) with (sub-)annual measurements at four sites. This is the first study investigating the benefits of this SMN where study sites are no experiments but managed by independent farmers. The main objective of this study was to investigate whether, and under which circumstances, annual soil carbon and nutrient measurements are more beneficial within a soil monitoring network than common five- to ten-year measurements using modeling and nutrient balances. Soil measurements (stocks of soil organic carbon (SOC), Ntot, P and Mg), weekly leachate-NO3–N and management data were used for comparison. C and N changes were modeled with DNDC (DeNitrification–DeComposition); P and Mg were calculated as full nutrient balances and compared to the observations using performance metrics. The results show that DNDC could reproduce the long-term trend of SOC and Ntot well, but this could also be by coincidence as the type of trendline depended on the starting year. The model results could not depict measured short-term variations in soil which were due to field heterogeneities caused by farm management. NO3-N leaching was strongly overestimated when organic fertilization and stronger rainfall occurred. Comparing stock changes with nutrient balances revealed that, in several cases, long-term trends could be shown to a limited extent and reproduced only very few short-term changes and variations. The results suggest that only annual soil property measurements can depict the soil’s variability and contribute to the identification of the true long-term trend.


Long-term soil monitoring I-BDF SOC change Soil modeling DNDC Nutrient balances Schleswig–Holstein 



We would like to thank both the Department Geology and Soil, Soil Conservation of the State Agency of Agriculture, Environment and Rural Areas of the Federal State Schleswig–Holstein (LLUR) and the Ministry of Energy, Agriculture, the Environment, Nature and Digitalization of the Federal State Schleswig–Holstein (MELUND) for the financial support (LLUR Grant Number: 4121-3-2007-440F), the good cooperation, and the data supply.

Supplementary material

10705_2019_10027_MOESM1_ESM.eps (9.6 mb)
Supplementary material 1 (EPS 9858 kb)
10705_2019_10027_MOESM2_ESM.eps (2 mb)
Supplementary material 2 (EPS 2059 kb)
10705_2019_10027_MOESM3_ESM.docx (279 kb)
Supplementary material 3 (DOCX 280 kb)


  1. Addiscott TM, Whitmore AP (1987) Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J Agric Sci Camb 109:141–157Google Scholar
  2. Ad-Hoc-AG Boden (2005) Bodenkundliche Kartieranleitung, 5th edn. Hannover, BerlinGoogle Scholar
  3. Arrouays D, Jolivet C, Boulonne L, Bodineau G, Saby N, Grolleau E (2002) A new projection in France: a multi-institutional soil quality monitoring network. Comptes Rendus de l’Académie d’Agriculture de France (France)Google Scholar
  4. Brilli L, Bechini L, Bindi M, Carozzi M, Cavalli D, Conant R, Ferrise R, Bellochi G (2017) Review and analysis of strengths and weaknesses of agro-ecosystem models for simulating C and N fluxes. Sci Total Environ 598:445–470PubMedGoogle Scholar
  5. Bünemann EK, Bongiorno G, Bai Z, Creamer RE, De Deyn G, de Goede R, Brussaard L (2018) Soil quality–a critical review. Soil Biol Biochem 120:105–125Google Scholar
  6. Chen Z, Wang J, Deng N, Lv C, Wang Q, Yu H, Li W (2018) Modeling the effects of farming management practices on soil organic carbon stock at a county-regional scale. CATENA 160:76–89Google Scholar
  7. Congreves KA, Dutta B, Grant BB, Smith WN, Desjardins RL, Wagner-Riddle C (2016) How does climate variability influence nitrogen loss in temperate agroecosystems under contrasting management systems? Agric Ecosyst Environ 227:33–41Google Scholar
  8. Desaules A (2012) Measurement instability and temporal bias in chemical soil monitoring: sources and control measures. Environ Monit Assess 184(1):487–502PubMedGoogle Scholar
  9. DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. Deutscher Verband für Wasserwirtschaft und Kulturbau e. V. (DVWK), Merkblätter zur Wasserwirtschaft 238/1996. Kommissionsbetrieb Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, BonnGoogle Scholar
  10. DWD (2017) Deutscher Wetterdienst: Weather data (daily maximum and minimum temperature, relative humidity and wind speed) of the weather stations Strucklahnungshörn, Hattstedt, Bordelum, Kiel-Leuchtturm, Schönhagen and Osdorf; for the time period from 2005 to 2015Google Scholar
  11. Egner H, Riem H, Domingo WR (1960) Untersuchungen über die chemische Bodenanalyse als Grundlage für Beurteilung des Nährstoffzustandes der Böden. II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungl Lantbrukhoegskolan Annonsera Ann 26:199–215Google Scholar
  12. Franko U, Oelschlägel B, Schenk S (1995) Simulation of temperature-, water- and nitrogen dynamics using the model CANDY. Ecol Model 81:213–222Google Scholar
  13. Frolking SE, Mosier AR, Ojima DS, Li C, Parton WJ, Potter CS, Priesack E, Stenger R, Haberbosch C, Dörsch P, Flessa H, Smith KA (1998) Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models. Nutr Cycl Agroecosyst 52:77–105Google Scholar
  14. Giani L, Makowsky L, Mueller K (2014) Plaggic Anthrosol: soil of the year 2013 in Germany: an overview on its formation, distribution, classification, soil function and threats. J Plant Nutr Soil Sci 177(3):320–329Google Scholar
  15. Gilhespy SL, Anthony S, Cardenas L, Chadwick D, del Prado A, Li C, Yeluripati JB (2014) First 20 years of DNDC (DeNitrification DeComposition) model evolution. Ecol Modell 292:51–62Google Scholar
  16. Giltrap DL, Li C, Saggar S (2010) DNDC: a process-based model of greenhouse gas fluxes from agricultural soils. Agric Ecosyst Environ 136(3–4):292–300Google Scholar
  17. Gubler A, Schwab P, Wächter D, Meuli RG, Keller A (2015) Ergebnisse der Nationalen Bodenbeobachtung (NABO) 1985–2009. Zustand und Veränderungen der anorganischen Schadstoffe und Bodenbegleitparameter. Umwelt-Zustand, (1507), 81Google Scholar
  18. Guest G, Kröbel R, Grant B, Smith W, Sansoulet J, Pattey E, Desjardins R, Jégo G, Tremblay N, Tremblay G (2017) Model comparison of soil processes in eastern Canada using DayCent, DNDC and STICS. Nutr Cycl Agroecosyst 109(3):211–232Google Scholar
  19. IUSS Working Group WRB (2006) World reference base for soil resources 2006. 2nd ed. World Soil Resources Reports No. 103. FAO, RomeGoogle Scholar
  20. Jäger N, Stange CF, Ludwig B, Flessa H (2011) Emission rates of N2O and CO2 from soils with different organic matter content from three long-term fertilization experiments — a laboratory study. Biol Fertil Soils 47(5):483Google Scholar
  21. Jahn R, Blume HP, Asio VB, Spaargaren O, Schad P (2006) Guidelines for soil description. FAO, RomeGoogle Scholar
  22. Jandl R, Rodeghiero M, Martinez C, Cotrufo MF, Bampa F, van Wesemael B, Harrison RB, Guerrini IA, Richter DdeB Jr, Rustad L, Lorenz K, Chabbi A, Miglietta F (2014) Current status, uncertainty and future needs in soil organic carbon monitoring. Sci Total Environ 468–469:376–383PubMedGoogle Scholar
  23. Jarecki M, Grant B, Smith W, Deen B, Drury C, VanderZaag A, Qian B, Yang J, Wagner-Riddle C (2018) Long-term trends in corn yields and soil carbon under diversified crop rotations. J Environ Qual 47:635–643PubMedGoogle Scholar
  24. Kaufmann-Boll C (Ed.) (2012) Bodendaten in Deutschland: Übersicht über die wichtigsten Mess-und Erhebungsaktivitäten für Böden. ahu AG Wasser, Boden, GeomatikGoogle Scholar
  25. Kröbel R, Sun Q, Ingwersen J, Chen X, Zhang F, Müller T, Römheld V (2010) Modelling water dynamics with DNDC and DAISY in a soil of the North China Plain: a comparative study. Environ Modell Softw 25(4):583–601Google Scholar
  26. LfL—Bayerische Landesanstalt für Landwirtschaft (2013) Basisdaten Stand 2013 für die Umsetzung der Düngeverordnung, GermanyGoogle Scholar
  27. Li CS (1998) User’s guide for the DNDC model. Institute for the Study of Earth, Ocean and Space University of New Hampshire, DurhamGoogle Scholar
  28. Li CS (2012) User’s guide for the DNDC model (version 95). Institute for the Study of Earth, Oceans and Space, DurhamGoogle Scholar
  29. Li C, Frolking S, Frolking TA (1992a) A model of nitrous oxide evolution from soil driven by rainfall events: 1. model structure and sensitivity. J Geophys Res 97:9759–9776Google Scholar
  30. Li C, Frolking S, Frolking TA (1992b) A model of nitrous oxide evolution from soil driven by rainfall events: 2. Appl J Geophys Res 97:9777–9783Google Scholar
  31. Li C, Frolking S, Crocker GJ, Grace PR, Klír J, Körchens M, Poulton PR (1997) Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma 81(1–2):45–60Google Scholar
  32. LKSH—Landwirtschaftskammer Schleswig-Holstein (2009) Richtwerte für die Düngung 2009, 20th edn. LKSH—Landwirtschaftskammer Schleswig-Holstein, RendsburgGoogle Scholar
  33. LLUR – State Agency of Agriculture, Environment and Rural Areas of the Federal State Schleswig-Holstein (2017) Unpublished soil, leachate, deposition and management data of the long-term soil monitoring network „Boden-Dauerbeobachtung Schleswig-Holstein“. LLUR – State Agency of Agriculture, Environment and Rural Areas of the Federal State Schleswig-Holstein, FlintbekGoogle Scholar
  34. Loague K, Green RE (1991) Statistical and graphical methods for evaluating solute transport models: overview and application. J Contain Hydrol 7:51–73Google Scholar
  35. Louis BP, Saby NPA, Orton TG, Lacarce E, Boulonne L, Jolivet C, Ratié C, Arrouays D (2014) Statistical sampling design impact on predictive quality of harmonization functions between soil monitoring networks. Geoderma 213:133–143Google Scholar
  36. Ludwig B, Bergstermann A, Priesack E, Flessa H (2011a) Modelling of crop yields and N2O emissions from silty arable soils with differing tillage in two long-term experiments. Soil Tillage Res 112(2):114–121Google Scholar
  37. Ludwig B, Jäger N, Priesack E, Flessa H (2011b) Application of the DNDC model to predict N2O emissions from sandy arable soils with differing fertilization in a long-term experiment. J Plant Nutr Soil Sci 174(3):350–358Google Scholar
  38. Montanarella L, Tóth G, Jones A (2011) Soil components in the 2009 LUCAS survey. In: Tóth G, Németh T (eds) Land quality and land use information - in the European Union. Office for Official Publications of the European Communities, Luxembourg, pp 209–220Google Scholar
  39. Nerger R (2010) Boden-Dauerbeobachtung Schleswig-Holstein: Auswertung der Projektergebnisse im Hinblick auf Aussagen zu Veränderungen von Böden, Aussagefähigkeit und Optimierung der eingesetzten Untersuchungsverfahren. Expert assessment, project report and annexes, Kiel University, Institute for Natural Resource Conservation, Department of Hydrology and Water resources management, 234 pp. (excl. annexes), Kiel, GermanyGoogle Scholar
  40. Nerger R, Beylich A, Fohrer N (2016) Long-term monitoring of soil quality changes in Northern Germany. Geod Reg 7(2):239–249Google Scholar
  41. Ogle SM, Breidt FJ, Easter M, Williams S, Killian K, Paustian K (2010) Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob Change Biol 16:810–822Google Scholar
  42. Orgiazzi A, Ballabio C, Panagos P, Jones A, Fernández-Ugalde O (2018) LUCAS soil, the largest expandable soil dataset for Europe: a review. Eur J Soil Sci 69:140–153Google Scholar
  43. Prechtel A, von Lützow M, Uwe Schneider B, Bens O, Bannick CG, Kögel-Knabner I, Hüttl RF (2009) Organic carbon in soils of Germany: status quo and the need for new data to evaluate potentials and trends of soil carbon sequestration. J Plant Nutr Soil Sci 172(5):601–614Google Scholar
  44. Schachtschabel P (1956) Die Magnesiumversorgung nordwestdeutscher Böden und seine Beziehungen zum Auftreten von Mangelsymptomen an Kartoffeln. Z Pflanzenern Bodenkde 74:202–219Google Scholar
  45. Springob G, Kirchmann H (2002) C-rich sandy Ap horizons of specific historical land-use contain large fractions of refractory organic matter. Soil Biol Biochem 34(11):1571–1581Google Scholar
  46. Tonitto C, David MB, Li C, Drinkwater LE (2007) Application of the DNDC model to tile-drained Illinois agroecosystems: model comparison of conventional and diversified rotations. Nutr Cycl Agroecosyst 78(1):65–81Google Scholar
  47. Tonitto C, Li C, Seidel R, Drinkwater L (2010) Application of the DNDC model to the rodale institute farming systems trial: challenges for the validation of drainage and nitrate leaching in agroecosystem models. Nutr Cycl Agroecosyst 87(3):483–494Google Scholar
  48. Trigalet S, Chartin C, Krüger I, Carnol M, Van Oost K, van Wesemael B (2017) Soil organic carbon fractionation for improving agricultural soil quality assessment–a case study in Southern Belgium (Wallonia). Biotechnologie, Agronomie, Société et Environnement = Biotechnology, Agronomy, Society and Environment, 21(S1)Google Scholar
  49. Uzoma KC, Smith W, Grant B, Desjardins RL, Gao X, Hanis K, Tenuta M, Goglio P, Li C (2015) Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the CAN-DNDC model. Agric Ecosyst Environ 206:71–83Google Scholar
  50. van Leeuwen JP, Saby NPA, Jones A, Louwagie G, Micheli E, Rutgers M, Schulte RPO, Spiegel H, Toth G, Creamer RE (2017) Gap assessment in current soil monitoring networks across Europe for measuring soil functions. Environ Res Lett 12(12):124007Google Scholar
  51. van Wesemael B, Paustian K, Andrén O, Cerri C, Dodd M, Etchevers J (2011) How can soil monitoring networks be used to improve predictions of organic carbon pool dynamics and CO fluxes in agricultural soils? Plant Soil 338:247–259Google Scholar
  52. van Wesemael B, Chartin C, Wiesmeier M, von Lützow M, Hobley E, Carnol M, Krüger I, Campione M, Roisine C, Hennart S, Kögel-Knabner I (2019) An indicator for organic matter dynamics in temperate agricultural soils. Agric Ecosyst Environ 274:62–75Google Scholar
  53. Vogeler I, Giltrap D, Cichota R (2013) Comparison of APSIM and DNDC simulations of nitrogen transformations and N2O emissions. Sci Total Environ 465:147–155PubMedGoogle Scholar
  54. Wendling U, Schellin HG, Thomae M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Zeitschrift für Meteorol 41:468–475Google Scholar
  55. Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, van Wesemael B, Rabot E, Ließ M, Garcia-Franco N, Wollschläger U, Vogel HJ, Kögel-Knabner I (2019) Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales. Geoderma 333:149–162Google Scholar
  56. Zhang W, Liu C, Zheng X, Zhou Z, Cui F, Zhu B, Haas E, Klatt S, Butterbach-Bahl K, Kiese R (2015) Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system. Agric Syst 140:1–10Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Hydrology and Water Resources ManagementKiel UniversityKielGermany
  2. 2.Department of Geology and Soil, Soil ConservationState Agency of Agriculture, Environment and Rural Areas of the Federal State Schleswig–Holstein (LLUR)FlintbekGermany

Personalised recommendations