Advertisement

Nutrient Cycling in Agroecosystems

, Volume 115, Issue 1, pp 1–39 | Cite as

Agronomic performance of P recycling fertilizers and methods to predict it: a review

  • Sylvia KratzEmail author
  • Christian Vogel
  • Christian Adam
Review Article
  • 258 Downloads

Abstract

Phosphorus (P) is an essential element for all life forms, and P-availability thus an important driver of a functioning agriculture. However, phosphate rock resources for P-fertilizer production are only available in a few countries. Therefore, P-recovery from waste materials has become of increasing interest during the last decade and has been investigated worldwide. In order to characterize potential novel P-fertilizers made from recycled materials, a large array of P-compound characterizations, chemical extractions and growth experiments were performed. This review bundles the work carried out in that field over the last years. Overall, P-fertilizers from recycled materials show a broad range of P-compounds with very different chemical structure and solubility. Growth experiments performed to assess their fertilizing effects display high variations for most of the products. While these experiments have demonstrated that some fertilizers made of recycled materials may reach P effects in the same order of magnitude as water-soluble phosphate rock-based fertilizers, an important limitation in their interpretation is the fact that they often vary considerably in their experimental design. The existing data show clearly that standardization of growth experiments is urgently needed to achieve comparable results. Standard chemical extractants used to assess the chemical solubility of P-fertilizers were found to be of limited reliability for predicting plant P uptake. Therefore, alternative methods such as sequential fractionation, or the extraction of incubated soil/fertilizer mixtures with standard soil extractants or with P sink methods should be tested more intensively in the future to provide alternative options to predict the P-availability of fertilizers from recycled materials.

Keywords

Recycling fertilizer Phosphorus Chemical extraction methods Agronomic performance Incubated soil/fertilizer mixtures P sink method Diffusive gradients in thin films (DGT) 

Notes

Acknowledgements

We thank Doreen Büttner (BAM) for the chemical extraction tests of the pure P compounds. Christian Vogel thanks the German Research Foundation (VO 1794/4-1) for financial support.

Supplementary material

10705_2019_10010_MOESM1_ESM.docx (62 kb)
Supplementary material 1 (DOCX 61 kb)

References

  1. AbfKlärV (2017) Verordnung über die Verwertung von Klärschlamm, Germany 27.09.2017Google Scholar
  2. Abrahamczik E, Niedermaier T (1968) Chemische Prüfverfahren. In: Scharrer K, Linser H (eds) Handbuch der Pflanzenernährung und Düngung, Band 2: Boden und Düngemittel (2. Hälfte). Springer, New York, pp 1555–1614Google Scholar
  3. Achat DL, Daumer ML, Sperandio M, Santellani AC, Morel C (2014a) Solubility and mobility of phosphorus recycled from dairy effluents and pig manures in incubated soils with different characteristics. Nutr Cycl Agroecosyst 99:1–15Google Scholar
  4. Achat DL, Sperandia M, Daumer ML, Santellani AC, Prud´Homme L, Akhtar M, Morel C (2014b) Plant-availability of phosphorus recycled from pig manures and dairy effluents as assessed by isotopic labeling techniques. Geoderma 232–234:24–33Google Scholar
  5. Adam C, Peplinski B, Michaelis M, Kley G, Simon FG (2009) Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag 29:1122–1128Google Scholar
  6. Alotaibi KD, Schoenau JJ, Gourango K, Peak D, Fonstad T (2018) Phosphorus speciation in a praire soil amended with MBM and DDG ash: sequential chemical extraction and synchrotron-based XANES spectroscopy investigations. Sci Rep 8:3617Google Scholar
  7. Amer F, Bouldin DR, Black CA, Duke FR (1955) Characterization of soil phosphorus by anion exchange resin adsorption and P32 equilibration. Plant Soil 6:391–408Google Scholar
  8. Antakyali D, Meyer C, Preyl V, Maier W, Steinmetz H (2013) Large-scale application of nutrient recovery from digested sludge as struvite. Water Pract Technol 8(2):256–262.  https://doi.org/10.2166/wtp.2013.027 Google Scholar
  9. Appel T, Friedrich K (2017) Phosphor-Recycling mit Karbonisaten aus Klärschlamm. Abschlussbericht Projekt 03FH088PX2, gefördert durch BMBF. Schriftenreihe des Hermann-Hoepke-Instituts, TH Bingen, Band 1. ISBN 978-3-9810496-2-6Google Scholar
  10. Appel T, Friedrich K, Susset D, Pint F (2016) Soda-Additiv beim Karbonisieren von Klärschlamm steigert die Phosphor-Düngewirkung im Gefäßversuch mit Mais. VDLUFA Schriftenreihe 73. Kongressband 2016:362–368Google Scholar
  11. Bekiaris G, Peltre C, Jensen LS, Bruun S (2016) Using FTIR-photoacoustic spectroscopy for phosphorus speciation analysis of biochars. Spectrochim Acta Part A Mol Biomol Spectrosc 168:29–36Google Scholar
  12. Bissani CA, Tedesco MJ, de Camargo FAO, Miola GL, Gianello C (2002) Anion-exchange resins and iron oxide-impregnated filter paper as plant available phosphorus indicators in soils. Commun Soil Sci Plant Anal 33(7–8):1119–1129Google Scholar
  13. Bogner R, Ortwein B (2018) Phosphorrückgewinnung—Geeignete Verfahren hinsichtlich der neuen Anforderungen. In: Holm O, Thomé-Kozmiensky E, Quicker P, Kopp-Assenmacher S (eds) Verwertung von Klärschlamm. Tagungsband zur Berliner Klärschlammkonferenz 5/6. November 2018. ISBN 978-3-944310-43-5, pp 419-426Google Scholar
  14. Bonvin C, Etter B, Udert KM, Frossard E, Nanzer S, Tamburini F, Oberson A (2015) Plant uptake of phosphorus and nitrogen recycled from synthetic source-separated urine. Ambio 44(Suppl. 2):S217–S227Google Scholar
  15. Braithwaite AC (1987) The use of chemical solubility tests in comparing phosphate fertilizers. Fertil Res 12:185–192Google Scholar
  16. Braithwaite AC, Eaton AC, Groom PS (1989) Some factors associated with the use of the extractants 2% citric acid and 2% formic acid as estimators of available phosphorus in fertilizer products. Fertil Res 19:175–181Google Scholar
  17. Braithwaite AC, Eaton AC, Groom PS (1990) Factors affecting the solubility of phosphate rock residues in 2% citric acid and 2% formic acid. Fertil Res 23:37–42Google Scholar
  18. Brandt C (2013) Wechselseitiger Einfluss des Wassergehaltes des Bodens und der Phytin-Zufuhr auf die Phosphor-Ernährung von Pflanzen. Dissertation, Universität RostockGoogle Scholar
  19. Brod E, Øgaard AF, Hansen E, Wragg D, Haraldsen TK, Krogstad T (2015a) Waste products as alternative phosphorus fertilisers part I: inorganic P species affect fertilisation effects depending on soil pH. Nutr Cycl Agroecosyst 103:167–185Google Scholar
  20. Brod E, Øgaard AF, Haraldsen TK, Krogstad T (2015b) Waste products as alternative phosphorus fertilisers part II: predicting P fertilization effects by chemical extraction. Nutr Cycl Agroecosyst 103:187–199Google Scholar
  21. Bruun S, Harmer SL, Bekiaris G, Christel W, Zuin L, Hu Y, Stoumann Jensen L, Lombi E (2017) The effect of different pyrolysis temperatures on the speciation and availability in soil of P in biochar produced from the solid fraction of manure. Chemosphere 169:377–386Google Scholar
  22. Cabeza R, Steingrobe B, Römer W, Claassen N (2011) Effectiveness of recycled P products as P fertilizers, as evaluated in pot experiments. Nutr Cycl Agroecosyst 91:173–184Google Scholar
  23. Cabeza R, Steingrobe B, Römer W, Claassen N (2013) Plant availability of isotopically exchangeable and isotopically nonexchangeable phosphate in soils. J Plant Nutr Soil Sci 176:688–695Google Scholar
  24. Chang SC, Jackson ML (1957) Fractionation of soil phosphorus. Soil Sci 84:133–144Google Scholar
  25. Chardon WJ, Menon RG, Chien SH (1996) Iron oxide impregnated filter paper (Pi test): a review of its development and methodological research. Nutr Cycl Agroecosyst 46:41–51Google Scholar
  26. Chien SH (1993) Solubility assessment for fertilizer containing phosphate rock. Fertil Res 35:93–99Google Scholar
  27. Chien SH, Hammond LL (1978) A comparison of various laboratory methods for predicting the agronomic potential of phosphate rocks for direct application. Soil Sci Soc Am J 42:935–939Google Scholar
  28. Christel W, Bruun S, Magid J, Jensen LS (2014) Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment. Biores Technol 169:543–551Google Scholar
  29. Christel W, Bruun S, Magid J, Kwapinski W, Jensen LS (2016) Pig slurry acidification, separation technology and thermal conversion affect phosphorus availability in soil amended with the derived solid fractions, chars or ashes. Plant Soil 401:93–107Google Scholar
  30. Colwell JD (1963) The estimation of phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Aust J Exp Agric Animal Husb 3:190–197Google Scholar
  31. Daumer ML, Santellani AC, Capdevielle A, Diara A (2013) Phosphorus recycling as struvite from pig manure. Influence of process parameters. In: RAMIRAN, 15th international conference, Versailles, France, June 3–5, 2013Google Scholar
  32. Davison W, Zhang H (1994) In situ speciation measurements of trace components in natural waters using thin-film gels. Nature 367:546–548Google Scholar
  33. Degryse F, Smolders E, Zhang H, Davison W (2009) Predicting availability of mineral elements to plant with the DGT technique: a review of experimental data and interpretation by modelling. Environ Chem 6:198–218Google Scholar
  34. Degryse F, Baird R, Da Silva RC, McLaughlin MJ (2017) Dissolution rate and agronomic effectiveness of struvite fertilizers—effect of soil pH, granulation and base excess. Plant Soil 410:139–152Google Scholar
  35. Delin S (2016) Fertilizer value of phosphorus in different residues. Soil Use Manag 32:17–26Google Scholar
  36. Di HJ, Condron LM, Frossard E (1997) Isotope techniques to study phosphorus cycling in agricultural and forest soils: a review. Biol Fertil Soils 24:1–12Google Scholar
  37. Ding S, Xu D, Sun Q, Yin H, Zhang C (2010) Measurement of dissolved reactive phosphorus using the diffusive gradients in thin films technique with a high-capacity binding phase. Environ Sci Technol 44:8169–8174Google Scholar
  38. Dittrich C, Rath W, Montag D, Pinnekamp J (2009) Phosphorus recovery from sewage sludge ash by a wet-chemical process. In: Ashley K, Mavinic D, Koch F (eds): Proceeding of the international conference on nutrient recovery from wastewater streams, 10–13 May, 2009, IWA Publishing, London, UK, pp 645–658Google Scholar
  39. Doolette AL, Smernik RJ (2011) Soil organic phosphorus speciation using spectroscopic techniques. In: Bünemann EK, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Heidelberg, pp 3–36Google Scholar
  40. Duboc O, Santner J, Golestani Fard A, Zehetner F, Tacconi J, Wenzel WW (2017) Predicting phosphorus availability from chemically diverse conventional and recycling fertilizers. Sci Total Environ 599(600):1160–1170Google Scholar
  41. Egle L, Rechberger H, Zessner M (2015) Overview and description of technologies for recovering phosphorus from municipal wastewater. Resour Conserv Recycl 105:325–346Google Scholar
  42. Egle L, Rechberger H, Krampe J, Zessner M (2016) Phosphorus recovery from municipal wastewater: an integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci Total Environ 571:522–542Google Scholar
  43. Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Boden-Analyse als Grundlage für die Beurteilung des Nährstoffzustandes der Boden. Kungliga Lantbrukshögskolans Annaler 26:199–215Google Scholar
  44. Ehbrecht A, Patzig D, Schönauer S, Schwotzer M, Schuhmann R (2009) Crystallisation of calcium phosphate from sewage sludge: efficiency of batch mode technology and quality of the generated products. In: Proceedings of international conference nutrient recovery from wastewater streams, May 10–13, Vancouver, Canada, pp 521–530Google Scholar
  45. Ehbrecht A, Ritter HJ, Schmidt SO, Schönauer S, Schuhmann R, Weber N (2016) Entwicklung eines kombinierten Kristallisationsverfahrens zur Gewinnung von Phosphatdünger aus dem Abwasserreinigungsprozess mit vollständiger Verwertung der Restphasen in der Zementindustrie. Abschlussbericht zum Forschungsvorhaben AiF-Nr. 17899 N. Forschungsbericht Nr. 2/2016Google Scholar
  46. Elliot HA, Potter JM, Kang JH, Brandt RC (2005) Neutral ammonium citrate extraction of biosolids phosphorus. Commun Soil Sci Plant Anal 36:2447–2459Google Scholar
  47. European Commission (2014) COM 1-214-297-EN F1-1 Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: on the review of the list of critical raw materials for the EU and the implementation of the Raw Materials Initiative. {SWD(2014) 171 final}Google Scholar
  48. European Commission (2017) Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the 2017 list of Critical Raw Materials for the EU. {COM(2017) 490 final}Google Scholar
  49. European Commission (2018) Report on critical raw materials and circular economy. https://ec.europa.eu/docsroom/documents/27327. Accessed 26 June 2019
  50. Fardeau JC, Guiraud G, Marol C (1996) The role of isotopic techniques on the evaluation of the agronomic effectiveness of P fertilizers. Fertil Res 45:101–109Google Scholar
  51. Finck A (1992) Dünger und Düngung. VCH Verlagsgesellschaft mbH, Weinheim. ISBN 3-527-28356-0Google Scholar
  52. Foereid B (2017) Phosphorus availability in residues as fertilizers in organic agriculture. Agric Food Sci 26:25–33Google Scholar
  53. Franz M (2008) Phosphate fertilizer from sewage sludge ash (SSA). Waste Manag 28(10):1809–1818Google Scholar
  54. Freese D, Lookman R, Merckx R, van Riemsdijk WH (1995) New method for assessment of long-term phosphate desorption from soils. Soil Sci Soc Am J 59:1295–1300Google Scholar
  55. Frossard E, Feller C, Tiessen H, Stewart JWB, Fardeau JC, Morel JL (1993) Can an isotopic method allow for the determination of the phosphate fixing capacity of soils? Commun Soil Sci Plant Anal 24:367–377Google Scholar
  56. Frossard E, Tekely P, Grimal JY (1994) Characterization of phosphate species in urban sewage sludges by high-resolution solid-state 31P NMR. Eur J Soil Sci 45:403–408Google Scholar
  57. Frossard E, Sinaj S, Dufour P (1996) Phosphorus in urban sewage sludges as assessed by isotopic exchange. Soil Sci Soc Am J 60:179–182Google Scholar
  58. Frossard E, Bauer JP, Lothe F (1997) Evidence of vivianite in FeSO4-flocculated sludges. Water Res 31:2449–2454Google Scholar
  59. Frossard E, Skrabal P, Sinaj S, Bangerter F, Traore O (2002) Forms and exchangeability of inorganic phosphate in composted solid organic waste. Nutr Cycl Agroecosyst 62:103–113Google Scholar
  60. Gericke S (1968) Thomasphophat. In: Scharrer K, Linser H (eds) Handbuch der Pflanzenernährung und Düngung, Band 2: Boden und Düngemittel (2. Hälfte). Springer, New York, pp 1168–1202Google Scholar
  61. Giguet-Covex C, Poulenard J, Chalmin E, Arnaud F, Rivard C, Jenny JP, Dorioz JM (2013) XANES spectroscopy as a tool to trace phosphorus transformation during soil genesis and mountain exosystem development from lake sediments. Geochimica et Cosmochimica Acta 118:129–147Google Scholar
  62. Glaesner N, Hansen HCB, Hu Y, Bekiaris G, Bruun S (2019) Low crystalline apatite in bone char produced at low temperture ameliorates phosphorus-deficient soils. Chemosphere 223:723–730Google Scholar
  63. Güngör K, Jørgensen A, Karthikeyan KG (2007) Determination of phosphorus speciation in dairy manure using XRD and XANES spectroscopy. J Environ Qual 36(6):1856–1863Google Scholar
  64. Günther L, Dockhorn T, Dichtl N, Müller J, Urban I, Phan LC, Weichgrebe D, Rosenwinkel KH, Bayerle N (2008) Technical and scientific monitoring of the large-scale seaborne technology at the WWTP Gifhorn. Water Pract Technol.  https://doi.org/10.2166/wpt.2008006 Google Scholar
  65. Haarstad K, Bavor J (2017) Phosphorus recycling from wastes. J Environ Prot 8:831–843Google Scholar
  66. Hagspiel B (2018) RN-Mephrec—Klärschlammverwertung Region Nürnberg—Klärschlamm zu Energie, Dünger und Eisen mit metallurgischem Phosphorrecycling in einem Verfahrensschritt. BMBF (02WER1313A) https://bmbf.nawam-erwas.de/de/project/krn-mephrec, 2018
  67. Hanßen H, Lebek M, Rak A, Schuri H (2016) Phosphorrecycling aus Klärschlammasche in Hamburg. KA Korrespondenz Abwasser, Abfall 63(10):886–893Google Scholar
  68. Hartmann TE, Wollmann I, You Y, Müller T (2019) Sensitivity of three phosphate extraction methods tp application of phosphate species differing in immediate plant availability. Agronomy 9:29.  https://doi.org/10.3390/agronomy9010029 Google Scholar
  69. Hedley M, McLaughlin M (2005) Reactions of phosphate fertilizers and by-products in soils. In: Sims TJ, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA-CSSA-SSSA Publishers, Madison, pp 181–252Google Scholar
  70. Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976Google Scholar
  71. Hermanussen O, Müller-Schaper J, Haun E, Weichgrebe D, Rosenwinkel KH, Esemen T, Dockhorn T, Dichtl N (2012) Wissenschaftliche Begleitung der großtechnischen Anwendung der Seaborne-Technologie auf der Kläranlage Gifhorn: Abschlussbericht—Zusammenfassung der durchgeführten Untersuchungen und technisch-wirtschaftliche Bewertung der Verfahrenstechnik. www.asg-gifhorn.de/docs/abschlussbericht_seaborne_technologie_gifhorn.pdf. Accessed 5 Dec 2018 (not available online at present, interested readers should contact ASG Gifhorn, Germany, via their contact form on http://www.asg-gifhorn.de/startseite/kontakt/)
  72. Herzel H, Krüger O, Hermann L, Adam C (2016) Sewage sludge ash—a promising secondary phosphorus source for fertilizer production. Sci Total Environ 542:1136–1143Google Scholar
  73. Higgins DJ (1982) Continuous solubility measurements on superphosphates. In: New Zealand Fertilizer Manufacturers’ Research Association (ed) 7th Research symposium: superphosphates and other phosphate fertilizers—a current appraisal. Auckland, 17–18 November 1982, pp 19–23Google Scholar
  74. Hignett TP, Brabson JA (1961) Evaluation of water-insoluble phosphorus in fertilizers by extraction with alkaline ammonium citrate solutions. J Agric Food Chem 9(4):272–276Google Scholar
  75. Huang XL, Shenker M (2004) Water-soluble and solid-state speciation in stabilized sewage sludge. J Environ Qual 33:1895–1903Google Scholar
  76. Huang R, Tang Y (2015) Speciation dynamics of phosphorus during (hydro)thermal treatments of sewage sludge. Environ Sci Technol 49:14466–14474Google Scholar
  77. Huang XL, Chgen Y, Shenker M (2012) Dynamics of phosphorus phytoavailability in soil amended with stabilized sewage sludge materials. Geoderma 170:144–153Google Scholar
  78. Huygens D, Daveyn H, Eder P, Delgado Sancho L. (2016) Draft STRUBIAS technical proposal—DRAFT nutrient recovery rules for recovered phosphate salts, ash-based materials and pyrolysis materials in view of their possible inclusion as component material categories in the revised fertiliser regulation. http://susproc.jrc.ec.europa.eu/activities/waste/documents/JRC_Interim_Report_STRUBIAS_recovery_rules.pdf. Accessed on 22 Mar 2019
  79. Kabbe C, Kraus F (2017) P-recovery: from evolution to revolution. Fertil Int 479:1–5Google Scholar
  80. Kahiluoto H, Kuisma M, Ketoja E, Salo T, Heikkinen J (2015) Phosphorus in manure and sewage sludge more recyclable than in soluble inorganic fertilizer. Environ Sci Technol 49:2115–2122Google Scholar
  81. Kern D, Friedrich K, Appel T (2016) Phosphor-Düngewirkung und Schwermetallverfügbarkeit von karbonisiertem Klärschlamm in Abhängigkeit von der Dauer der Karbonisierung und der Zugabe von Natriumsulfat. VDLUFA-Schriftenreihe 73. Kongressband 2016:355–361Google Scholar
  82. Kizewski F, Liu YT, Morris A, Hesterberg D (2011) Spectroscopic approaches for phosphorus speciation in soils and other environmental systems. J Environ Qual 40:751–766Google Scholar
  83. Kratz S, Schnug E (2009) Zur Frage der Löslichkeit und Pflanzenverfügbarkeit von Phosphor in Düngemitteln. J Kulturpflanzen 61(1):2–8Google Scholar
  84. Kratz S, Haneklaus S, Schnug E (2010) Chemical solubility and agricultural performance of P-containing recycling fertilizers. Landbauforschung vTI Agric For Res 60:227–240Google Scholar
  85. Kratz S, Stöven K, Godlinski F, Schnug E (2011) Die Nutzung von Schlachtnebenprodukten als Dünger—ein Übersichtsreferat. Gehalten zum Seminar: „Die (Wieder-) Nutzung von Schlachtneben-produkten“, Tierärztliche Hochschule Hannover am 04 Feb 2011 (conference paper). https://www.researchgate.net/publication/282847086_Die_Nutzung_von_Schlachtnebenprodukten_als_Dunger. Accessed 26 June 2019
  86. Kratz S, Schick J, Øgaard AF (2016) P solubility of inorganic and organic P sources. In: Schnug E, de Kok L (eds) Phosphorus: 100% zero, Protecting water bodies from negative impacts of agriculture: higher P utilisation for reduced P loads. Springer, Berlin, pp 127–154Google Scholar
  87. Kratz S, Bloem E, Papendorf J, Schick J, Schnug E, Harborth P (2017) Agronomic efficiency and heavy metal contamination of phosphorus (P) recycling products from old sewage sludge ash landfills. Journal für Kulturpflanzen 69(11):373–385Google Scholar
  88. Kraus F, Zamzow M, Conzelmann L, Remy C, Kleyböcker A, Seis W, Miehe U, Hermann L, Hermann R, Kabbe C (2019) Ökobilanzieller Vergleich der P-Rückgewinnung aus dem Abwasserstrom mit der Düngemittelproduktion aus Rohphosphaten unter Einbeziehung von Umweltfolgeschäden und deren Vermeidung. Kompetenzzentrum Wasser gGmbH, Proman Management GmbH, Umweltbundesamt. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-02-19_texte_13-2019_phorwaerts.pdf. Accessed 26 June 2019
  89. Krüger O, Adam C (2014) Monitoring von Klärschlammmonoverbrennungsaschen hinsichtlich ihrer Zusammensetzung zur Ermittlung ihrer Rohstoffrückgewinnungspotentiale und zur Erstellung von Referenzmaterial für die Überwachungsanalytik. UBA-Texte 49/2014Google Scholar
  90. Krüger O, Adam C (2015) Recovery potential of German sewage sludge ash. Waste Manag 45:400–406Google Scholar
  91. Krüger O, Grabner A, Adam C (2014) Complete survey of German sewage sludge ash. Environ Sci Technol 48:11811–11818Google Scholar
  92. Krüger O, Fattah KP, Adam C (2016) Phosphorus recovery from the wastewater stream—necessity and possibilities. Desalination Water Treat 57(33):15619–15627Google Scholar
  93. Kruse J, Adraham M, Amelung W, Baum C, Bol R, Kühn O, Lewandowski H, Niederberger J, Oelmann Y, Rüger C, Santner J, Siebers M, Siebers N, Spohn M, Vestergren J, Vogts A, Leinweber P (2015) Innovative methods in soil phopshorus research: a review. J Plant Nutri Soil Sci 178:43–88Google Scholar
  94. Kuroda A, Takiguchi N, Gotanda T, Nomura K, Kato J, Ikeda T, Ohtake H (2002) A simple method to release polyphosphates from activated sludge for phosphorus reuse and recycling. Biotechnol Bioeng 78:333–338Google Scholar
  95. Leinweber P, Haumaier L, Zech W (1997) Sequential extractions and 31P-NMR spectroscopy of phosphorus forms in animal manures, whole soils and particle-size separates from a densely populated livestock area in northwest Germany. Biol Fertil Soils 25(1):89–94Google Scholar
  96. Lekfeldt JDS, Rex M, Mercl F, Kulhánek M, Tlustoš P, Magid J, de Neergaard A (2016) Effect of bioeffectors and recycled P-fertiliser products on the growth of spring wheat. Chem Biol Technol Agric 3:22.  https://doi.org/10.1186/s40538-016-0074-4 Google Scholar
  97. Lemming C, Scheutz C, Bruun S, Jensen LS, Magid J (2017a) Effects of thermal drying on phosphorus availability from iron-precipitated sewage sludge. J Plant Nutr Soil Sci 180(6):720–728Google Scholar
  98. Lemming C, Bruun S, Jensen LS, Magid J (2017b) Plant availability of phosphorus from dewatered sewage sludge, untreated incineration ashes, and other products recovered from a wastewater treatment system. J Plant Nutr Soil Sci 180(6):779–787Google Scholar
  99. Lindsay WL (1979) Chemical equilibria in soils. Wiley, New York. ISBN 0-471-02704-9Google Scholar
  100. Lou H, Zhao C, Yang S, Shi L, Wang Y, Ren X, Bai J (2018) Quantitative evaluation of legacy phosphorus and its spatial distribution. J Environ Manage 211:296–305.  https://doi.org/10.1016/j.jenvman.2018.01.062 Google Scholar
  101. Lu X, Shih K, Li X, Liu G, Zeng EY, Wang F (2016) Accuracy and application of quantitative X-ray diffraction on the precipitation of struvite products. Water Res 90:9–14Google Scholar
  102. Mackay AD, Syers JK, Gregg PEH (1984) Ability of chemical extraction procedures to assess the agronomic effectiveness of phosphate rock materials. N Z J Agric Res 27:219–230Google Scholar
  103. Mackay JE, Cavagnaro TR, Jakobsen I, Macdonald LM, Groenlund M, Thomson TP, Müller-Stöver DS (2017) Evaluation of phosphorus in thermally converted sewage sludge: P pools and availability to wheat. Plant Soil 418:307–317Google Scholar
  104. Mañas A, Biscans B, Spérandio M (2011) Biologically induced phosphorus precipitation in aerobic granular sludge process. Water Res 45:3776–3786Google Scholar
  105. Mañas A, Spérandio M, Decker F, Biscans B (2012) Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge. Environ Technol 33:2195–2209Google Scholar
  106. Mason S, Hamon R, Nolan A, Zhang H, Davison W (2005) Performance of a mixed binding layer for measuring anions and cations in a single assay using the diffusive gradients in thin films technique. Anal Chem 77:6339–6346Google Scholar
  107. Mason S, McLaughlin MJ, Johnston C, McNeil A (2013) Soil test measures of available P (Colwell, resin and DGT) compared with plant P uptake using isotope dilution. Plant Soil 373:711–722Google Scholar
  108. Menon RG, Hammond LL, Sissingh HA (1988) Determination of plant-available phosphorus by the iron hydroxide-impregnated filter paper (Pi) soil test. Soil Sci Soc Am J 53:110–115Google Scholar
  109. Menzies NW, Kusumo B, Moody PW (2005) Assessment of P availability in heavily fertilized soils using the diffusive gradient in thin films (DGT) technique. Plant Soil 269:1–9Google Scholar
  110. Meyer G, Frossard E, Mäder P, Nanzer S, Randall DG, Udert KM, Oberson A (2017) Water soluble phosphate fertilizers for crops grown in calcareous soils—an outdated paradigm for recycled phosphorus fertilizers? Plant Soil.  https://doi.org/10.1007/s11104-017-3545-x Google Scholar
  111. Mino T, Matsuo T (1984) Principle mechanism of biological phosphate removal. Jpn J Water Pollut Res 7:605–609Google Scholar
  112. Mohr CW, Vogt RD, Roeyset O, Andersen T, Parekh NA (2015) An in-depth assessment into simultaneous monitoring of dissolved reactive phosphorus (DRP) and low-molecular-weight organic phosphorus (LMWOP) in aquatic environments using diffusive gradients in thin films (DGT). Environ Sci Process Impacts 17:711–727Google Scholar
  113. Möller K, Oberson A, Bünemann E, Cooper J, Friedel J, Glæsner N, Hörtenhuber S, Løes AK, Mäder P, Meyer G, Müller T, Symanczik S, Weissengruber L, Wollmann I, Magid J (2018) Improved phosphorus recycling in organic farming: navigating between constraints. Adv Agron 147:157–237Google Scholar
  114. Morshedizad M, Panten K, Klysubun W, Leinweber P (2018) Bone char effects on soil: sequential fractionations and XANES spectroscopy. Soil 4:23–35Google Scholar
  115. Mullins G, Joern B, Moore P (2005) By-product phosphorus: sources, characteristics and management. In: Sims TJ, Sharpley AN (eds) Phosphorus: agriculture and the environment. ASA-CSSA-SSSA Publishers, USA, pp 829–880Google Scholar
  116. Mundus S, Carstensen A, Husted S (2017) Predicting phosphorus availabaility to spring varley (Hordeum vulgare) in agricultural soils of Scandinavia. Field Crops Res 212:1–10Google Scholar
  117. Nanzer S (2014) Evaluation of a phosphate fertilizer from sewage sludge ashes: a journey from the molecule to the field. Dissertation, ETH Zurich No. 20898Google Scholar
  118. Nanzer S, Oberson A, Berger L, Berset E, Hermann L, Frossard E (2014a) The plant availability of phosphorus from thermo-chemically treated sewage sludge ashes as studied by 33P labeling techniques. Plant Soil 377:439–456Google Scholar
  119. Nanzer S, Oberson A, Huthwelker T, Eggenberger U, Frossard E (2014b) The molecular environment of phosphorus in sewage sludge ash: implications for bioavailability. J Environ Qual 43:1050–1060Google Scholar
  120. Negassa W, Kruse J, Michalik D, Appathurai N, Zuin L, Leinweber P (2010) Phosphorus Speciation in Agro-Industrial Byproducts: Sequential Fractionation, Solution 31P NMR, and P K- and L2,3-Edge XANES Spectroscopy. Environ Sci Technol 44(6):2092–2097Google Scholar
  121. Neubauer H (1931) Die Keimpflanzenmethode nach Neubauer und Schneider. In: Honcamp F (ed) Düngemittel und Düngung. Handbuch der Pflanzenernährung und Düngerlehre, vol 2. Springer, Berlin, pp 882–902Google Scholar
  122. Neubauer H, Schneider W (1923) Die Nährstoffaufnahme der Keimpflanzen und ihre Anwendung auf die Bestimmung des Nährstoffgehalts der Böden. Z Pflanzenernährung Düngung A. Wissenschaftlicher Teil 2:329–362Google Scholar
  123. O’Connor GA, Sarkar D, Brinton SR, Elliott HA, Martin FG (2004) Phytoavailability of biosolids phosphorus. J Environ Qual 33(2):703–712Google Scholar
  124. Oberson A, Tagmann HU, Langmeier M, Dubois D, Mäder P, Frossard E (2010) Fresh and residual phosphorus uptake by ryegrass from soils with different fertilization histories. Plant Soil 334:391–407Google Scholar
  125. Øgaard AF, Brod E (2016) Efficient phosphorus cycling in food production: predicting the phosphorus fertilization effect of sludge from chemical wastewater treatment. J Agric Food Chem 64:4821–4829Google Scholar
  126. Ohbuchi A, Sakamoto J, Kitano M, Nakamura T (2008) X-ray fluorescence analysis of sludge ash from sewage disposal plant. X-Ray Spectrom 37:544–550Google Scholar
  127. Olsen SR, Cole C, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939. U.S. Government Printing Office, Washington D.CGoogle Scholar
  128. Panther JG, Teasdale PR, Bennett W, Welsh DT, Zhao H (2010) Titanium dioxide-based DGT technique for in situ measurements of dissolved reactive phosphorus in fresh and marine waters. Environ Sci Technol 44:9419–9424Google Scholar
  129. Paz EA, McDowell LR, Conrad JH, Damron BL (1984) Biological availability of phosphorus from basic steel slag. Anim Feed Sci Technol 11:75–83Google Scholar
  130. Peplinski B, Adam C, Michaelis M, Kley G, Emmerling F, Simon FG (2009) Reaction sequences in the thermo-chemical treatment of sewage sludge ashes revealed by X-ray powder diffraction—a contribution to the European project SUSAN. Z Kristallogr 30:459–464Google Scholar
  131. Petzet S, Peplinski B, Cornel P (2012) On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res 46:3769–3780Google Scholar
  132. Quin BF (1982) The use of citric-acid soluble and water-soluble phosphate to assess the agronomic value of fertilizers. In: New Zealand Fertilizer Manufacturers’ Research Association (Hrsg.) 7th research symposium: superphosphates and other phosphate fertilizers—a current appraisal. Auckland, 17–18 November 1982, pp 40–54Google Scholar
  133. Rajendran J, Gialanella S, Aswath PB (2013) XANES analysis of dried and calcined bones. Mater Sci Eng, C 33:3968–3979Google Scholar
  134. Randall DG, Krähenbühl M, Köpping I, Larsen TA, Udert KM (2016) A novel approach for stabilizing fresh urine by calcium hydroxide addition. Water Res 95:361–369Google Scholar
  135. Rex M, Drissen P, Bartsch S, Breuer J, Pischke J (2014) Aufschluss von Phosphor aus Klärschlamm- und Tiermehlaschen in flüssiger Konverterschlacke. Presentation at the workhop Abwasser-Phosphor-Dünger, 29 Jan 2014, Berlin, Germany. www.umweltbundesamt.de/sites/default/files/medien/378/dokumente/rex_ksa-konverterschlacke.pdf. Accessed 26 June 2019
  136. Römer W (2006) Plant availability of P from recycling products and phosphate fertilizers in a growth-chamber trial with rye seedlings. J Plant Nutr Soil Sci 169:826–832Google Scholar
  137. Römer W, Steingrobe B (2018) Fertilizer effect of phosphorus recycling products. Sustainability 10:1166.  https://doi.org/10.3390/su10041166 Google Scholar
  138. Saunders WMH (1964) Extraction of soil phosphate by anion-exchange membrane. N Z J Agric Res 7:424–431Google Scholar
  139. Schaum C (2007) Verfahren für eine zukünftige Klärschlammbehandlung – Klärschlammkonditionierung und Rückgewinnung von Phosphor aus Klärschlammasche. PhD Thesis. IWAR Schriftenreihe 185, TU Darmstadt, GermanyGoogle Scholar
  140. Scheffer F (1956) Über die Düngewirkung von Rhenania-Phosphat auf Muschelkalkböden. Z Pflanzenernähr Düng Bodenkd 67(112):142–149Google Scholar
  141. Scheidig K, Mallon J, Schaaf M (2009) Profitable recovery of phosphorus from sewage sludge and meat and bone meal by the Mephrec process—a new means of thermal sludge and ash treatment. In: International conference on nutrient recovery from wastewater streams, Vancouver, Canada, pp 563–566Google Scholar
  142. Schick J (2009) Untersuchungen zu P-Düngewirkung und Schwermetallgehalten thermochemisch behandelter Klärschlammaschen. Ph.D. dissertation, Technical University BraunschweigGoogle Scholar
  143. Schilling G (2000) Pflanzenernährung und Düngung. Verlag Eugen Ulmer, Stuttgart. ISBN 3-8252-8189-2Google Scholar
  144. Schmitt L (1969a) Über die Beziehungen zwischen chemischer Löslichkeit und pflanzen-physiologischer Wirkung verschiedener Phosphatformen. 1. Mitteilung. Landwirtschaftliche Forschung 22(2):109–115Google Scholar
  145. Schmitt L (1969b) Über die Beziehungen zwischen chemischer Löslichkeit und pflanzen-physiologischer Wirkung verschiedener Phosphatformen. 2. Mitteilung. Landwirtschaftliche Forschung 22(4):314–325Google Scholar
  146. Schueller H (1969) Die CAL-Methode, eine neue Methode zur Bestimmung des pflanzenverfügbaren Phosphates in Boden. Z Pflanzenernähr Düng Bodenkd 123:48–63Google Scholar
  147. Severin M, Breuer J, Rex M, Stemann J, Adam C, Van den Weghe H, Kücke M (2014) Phosphate fertilizer value of heat treated sewage sludge ash. Plant Soil Environ 60(12):555–561Google Scholar
  148. Sharpley A, Moyer B (2000) Phosphorus forms in manure and compost and their release during simulated rainfall. J Environ Qual 29:1462–1469Google Scholar
  149. Shober AL, Hesterberg DL, Sims JT, Gardner S (2006) Characterization of phosphorus species in biosolids and manures using XANES spectroscopy. J Environ Qual 35:1983–1993Google Scholar
  150. Sibbesen E (1977) A simple ion-exchange resin procedure for extracting plant-available elements from soil. Plant Soil 46:665–669Google Scholar
  151. Sibbesen E (1983) Phosphate soil tests and their suitability to assess the phosphate status of soil. J Sci Food Agric 34:1368–1374Google Scholar
  152. Sikora JF, Mullins GL (1995) Bioavailability of citrate-insoluble phosphorus in monoammonium phosphate and triple superphosphate fertilizers. Soil Sci Soc Am J 59:1183–1188Google Scholar
  153. Sikora JF, Dillard EF, Copeland JP, Bartos JM (1989) Chemical characterization and bioavailability of phosphorus in water-insoluble fractions of three mono-ammonium phosphate fertilizers. J Assoc Off Anal Chem 72:852–856Google Scholar
  154. Sissingh HA (1971) Analytical technique of the Pw method used for the assessment of the phosphate status of arable soils in the Netherlands. Plant Soil 34:438–446Google Scholar
  155. Six L, Pypers P, Degryse F, Smolders E, Merckx R (2012) The performance of DGT versus conventional soil phosphorus tests in tropical soils—an isotope dilution study. Plant Soil 359:267–279Google Scholar
  156. Six L, Smolders E, Merckx R (2013) The performance of DGT versus conventional soil phosphorus tests in tropical soils—maize and rice responses to P application. Plant Soil 366:49–66Google Scholar
  157. Six L, Smolders E, Merckx R (2014) Testing phosphorus availability for maize with DGT in weathered soils amended with organic materials. Plant Soil 376:177–192Google Scholar
  158. Steckenmesser D, Vogel C, Adam C, Steffens D (2017) Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance. Waste Manag 62:194–203Google Scholar
  159. Stemann J, Peplinski B, Adam C (2015) Thermochemical treatment of sewage sludge ashes with sodium salt additives for phosphorus fertilizer production—analysis of underlying chemical reactions. Waste Manag 45:385–390Google Scholar
  160. Stratful I, Brett S, Scrimshaw MB, Lester JN (1999) Biological phosphorus removal, its role in phosphorus recycling. Environ Technol 20:681–695Google Scholar
  161. Sumner ME, Miller WP (1996) Cation exchange capacity and exchange coefficients. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis part 3, chemical methods. American Society of Agronomy Inc, Madison, pp 1201–1229Google Scholar
  162. Terman GL, Hoffman GW, Wright BC (1964) Crop response to fertilizers in relation to content of “available” phosphorus. Adv Agron 16:59–100Google Scholar
  163. Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter MR (ed) Soil sampling and methods of analysis. Lewis Publishers, Boca Raton, pp 75–86Google Scholar
  164. Tiessen H, Stewart JWB, Moir JO (1983) Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60–90 years of cultivation. J Soil Sci 34:815–823Google Scholar
  165. Toor GS, Cade-Menun BJ, Sims JT (2005a) Establishing a linkage between phosphorus forms in dairy diets, feces, and manures. J Environ Qual 34:1380–1391Google Scholar
  166. Toor GS, Peak JD, Sims JT (2005b) Phosphorus speciation in broiler litter and turkey manure produced from modified diets. J Environ Qual 34:687–697Google Scholar
  167. Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002) Inositol phosphates in the environment. Philos Trans R Soc Lond B 357:449–469Google Scholar
  168. Uusitalo R, Yli-Halla M (1999) Estimating errors associated with extracting phosphorus using iron oxide and resin methods. J Environ Qual 28:1891–1897Google Scholar
  169. Valančienė V (2011) Utilization of meat and bone meal bottom ash in ceramics. Mater Sci 17(1):86–92Google Scholar
  170. van der Paauw F (1971) An effective water extraction method for the determination of plant-available soil phosphorus. Plant Soil 34(1):467–481Google Scholar
  171. Van der Zee SEATM, Fokkink LGJ, van Riemsdijk WH (1987) A new technique for assessment of reversibly adsorbed phosphate1. Soil Sci Soc Am J 51:599–604Google Scholar
  172. Van Moorleghem C, Six L, Degryse F, Smolders E, Merckx R (2011) Effect of organic P forms and p resent in inorganic colloids on the determination of dissolved P in environmental samples by the diffusive gradient in thin films technique, ion chromatography, and colorimetry. Anal Chem 83:5317–5323Google Scholar
  173. Vaneeckhaute C, Janda J, Vanrolleghem PA, Tack FMG, Meers E (2016) Phosphorus use efficiency of bio-based fertilizers: bioavailability and fractionation. Pedosphere 26:310–325Google Scholar
  174. VDLUFA II.2 (2008) VDLUFA Methodenbuch Band II.2 Die Untersuchung von Sekundärrohstoffdüngern, Kultursubstraten und Bodenhilfsstoffen. 1. Ergänzungslieferung 2008, Methode Nr. 3.7.2.1. VDLUFA Verlag, DarmstadtGoogle Scholar
  175. Vogel C, Adam C (2011) Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid. Environ Sci Technol 45:7445–7450Google Scholar
  176. Vogel C, Adam C, Peplinski B, Wellendorf S (2010) Chemical reactions during the preparation of P and NPK fertilizers from thermochemically treated sewage sludge ashes. Soil Sci Plant Nutr 56:627–635Google Scholar
  177. Vogel C, Kohl A, Adam C (2011) Spectroscopic investigation in the mid- and far-infrared regions of phosphorus fertilizers derived from thermochemically treated sewage sludge ash. Appl Spectrosc 65:265–271Google Scholar
  178. Vogel C, Adam C, McNaughton D (2013a) Determination of phosphate phases in sewage sludge ash based fertilisers by Raman microspectroscopy. Appl Spectrosc 67(9):1101–1105Google Scholar
  179. Vogel C, Adam C, Sekine R, Schiller T, Lipiec E, McNaughton D (2013b) Determination of P-fertiliser-soil reactions by Raman and synchrotron infrared microspectroscopy. Appl Spectrosc 67(10):1165–1170Google Scholar
  180. Vogel T, Nelles M, Eichler-Löbermann B (2015) Phosphorus application with recycled products from municipal waste water to different crop species. Ecol Eng 83:466–475Google Scholar
  181. Vogel C, Rivard C, Tanabe I, Adam C (2016) Microspectroscopy—promising techniques to characterize phosphorus in soil. Commun Soil Sci Plant Anal 47(18):2088–2102Google Scholar
  182. Vogel C, Sekine R, Steckenmesser D, Lombi E, Steffens D, Adam C (2017a) Phosphorus availability of sewage sludge based fertilizers determined by the diffusive gradient in thin films (DGT) technique. J Plant Nutr Soil Sci 180:594–601Google Scholar
  183. Vogel T, Kruse J, Siebers N, Nelles M, Eichler-Löbermann B (2017b) Recycled products from municipal wastewater: composition and effects on phosphorus mobility in a sandy soil. J Environ Qual 46:443–451Google Scholar
  184. Vogel C, Rivard C, Wilken V, Muskolus A, Adam C (2018) Performance of secondary P-fertilizers in pot experiments analyzed by phosphorus X-ray absorption near edge structure (XANES) spectroscopy. Ambio 47:62–72Google Scholar
  185. Vogel C, Sekine R, Steckenmesser D, Lombi E, Herzel H, Zuin L, Wang D, Félix R, Adam C (2019) Combining diffusive gradients in thin films (DGT) and spectroscopic techniques for the determination of phosphorus species in soils. Anal Chim Acta 1057:80–87Google Scholar
  186. Vuorinen J, Mäkitie O (1995) The method of soil testing in use in Finland. Agrogeol Publ 63:1–44Google Scholar
  187. VVEA (2015) Verordnung über die Vermeidung und die Entsorgung von Abfällen (VVEA), SwitzerlandGoogle Scholar
  188. Waida C, Kehres B (2014) Phosphat-Löslichkeit organischer Düngemittel. Humuswirtschaft Kompost aktuell 10(2014):1–4Google Scholar
  189. Wang J, Chu G (2015) Phosphate fertilizer form and application strategy affect phosphorus mobility and transformation in a drip-irrigated calcareous soil. J Plant Nutr Soil Sci 178:914–922Google Scholar
  190. Wang T, Camps-Arbestain M, Hedley M, Bishop P (2012) Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 357:173–187Google Scholar
  191. Weissengruber L, Möller K, Puschenreiter M, Friedel JK (2018) Long-term soil accumulation of potentially toxic elements and selected organic pollutants through application of recycled phosphorus fertilizers for organic farming conditions. Nutr Cycl Agroecosyst 110:427–449Google Scholar
  192. Wilken V, Kabbe C (2015) Sustainable sewage sludge management fostering phosphorus recovery and energy efficiency (EU-Project P-REX). Deliverable D 8.1 Quantification of nutritional value and toxic effects of each P recovery productGoogle Scholar
  193. Wollmann I, Gauro A, Müller T, Möller K (2018) Phosphorus bioavailability of sewage sludge-based recycled fertilizers. J Plant Nutr Soil Sci 181:158–166Google Scholar
  194. Xie FZ, Hu TT, Fu HH, Luo X, Wang XB, Sheng DD, Li HB, Wang XC, Xie ZY (2016) Basic magnesium carbonate-based DGT technique for in situ measurements of dissolved phosphorus in eutrophic waters. Chin J Anal Chem 44:965–969Google Scholar
  195. Yli-Halla M (2016) Fate of fertilizer P in soils: inorganic pathway. In: Schnug E, de Kok L (eds) Phosphorus: 100% zero, protecting water bodies from negative impacts of agriculture: higher P utilisation for reduced P loads. Springer, Berlin, pp 27–40Google Scholar
  196. Yli-Halla M, Schick J, Kratz S, Schnug E (2016) Determination of plant available P in soil. In: Schnug E, de Kok L (eds) Phosphorus: 100% zero, protecting water bodies from negative impacts of agriculture: higher P utilisation for reduced P loads. Springer, Berlin, pp 63–93Google Scholar
  197. Yusiharni BE, Ziadi H, Gilkes RJ (2007) A laboratory and glasshouse evaluation of chicken litter ash, wood ash, and iron smelting slag as liming agents and P fertilisers. Aust J Soil Res 45:374–389Google Scholar
  198. Zeggel L, Riedel H, Marb C (2015) Rückholbarkeit von Phosphor aus kommunalen Klärschlämmen—Abschlussbericht. Bayrisches Landesamt für Umwelt (LfU), AugsburgGoogle Scholar
  199. Zhang H, Davison W, Gadi R, Kobayashi T (1998) In situ measurement of dissolved P in natural waters using DGT. Anal Chim Acta 370:29–38Google Scholar
  200. Zimmermann J, Dott W (2009) Sequenced bioleaching and bioaccumulation of phosphorus from sludge combustion—a new way of resource reclaiming. Adv Mater Res 17:625–628Google Scholar
  201. Zwetsloot MJ, Lehmann J, Solomon D (2015) Recycling slaughterhouse waste into fertilizer: how do pyrolysis temperature and biomass additions affect phosphorus availability and chemistry? J Sci Food Agric 95:281–288Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute for Crop and Soil ScienceJulius Kühn Institute (JKI) – Federal Research Centre for Cultivated PlantsBrunswickGermany
  2. 2.Division 4.4 Thermochemical Residues Treatment and Resource RecoveryBundesanstalt für Materialforschung und -prüfung (BAM)BerlinGermany

Personalised recommendations