Advertisement

Nutrient Cycling in Agroecosystems

, Volume 114, Issue 1, pp 45–55 | Cite as

Soil quality decrease over 13 years of agricultural production

  • Andrés Beretta-BlancoEmail author
  • Osvaldo Pérez
  • Leonidas Carrasco-Letelier
Original Article
  • 47 Downloads

Abstract

Soils are a key issue in the management of global environmental changes and food supply. The goal of this work was to characterize the soil changes that were promoted by agriculture in Uruguay in the period 2002–2014. We analysed the association between pH, Ca2+, Mg2+, K+, Na+ and soil organic carbon (SOC) and its tendency through the years of soil analysis database 2002–2014 that belong to Experimental Station Alberto Boerger INIA La Estanzuela (Colonia, Uruguay). During the study period, the average soil pH, SOC, and exchangeable base content across the archive sample set were reduced. The exchangeable K+ content decreased by 0.04 mmol kg−1 year−1 with the increase in grain production. The SOC decreased by 0.43 mg (g year)−1 even when most agricultural activity followed a no-tillage system. A reduction of 0.02 units of pH per year also occurred. If these changes continue in the future, agricultural soils will significantly decrease their food production potential, and will not be adequate for sustainable crop production.

Keywords

Soil degradation Acidification Soil organic carbon Exchangeable potassium 

Notes

References

  1. Arbeletche P, Coppola M, Paladino C (2012) Análisis del agro-negocio como forma de gestión empresarial en América del Sur: el caso uruguayo. Agrocienc Urug 16:110–119Google Scholar
  2. Baker JM, Ochsner TE, Venterea RT, Griffis TJ (2007) Tillage and soil carbon sequestration—what do we really know? Agr Ecosyst Environ 118:1–5.  https://doi.org/10.1016/j.agee.2006.05.014 CrossRefGoogle Scholar
  3. Balzarini M, Di Rienzo A, Cazanoves F, et al (2008) InfoStat software estadístico InfoStat versión 2008. Manual de usuario, Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar/. Accessed 10 Dec 2018
  4. Barbazán M, Ferrando M, Zamalvide J (2007) Estado nutricional de Lotus corniculatus L. en Uruguay. Agrocienc Urug 11:22–34Google Scholar
  5. Barbazán M, Bautes C, Beux L et al (2011) Fertilización potásica en cultivos de secano sin laboreo en Uruguay: rendimiento según análisis de suelos. Agrocienc Urug 15:93–99.  https://doi.org/10.2477/vol15iss2pp93-99 Google Scholar
  6. Bohn HL, McNeal BL, O’Connor GA, Orozco MS (2003) Química del suelo. Limusa MexicoGoogle Scholar
  7. Bouman OT, Curtin D, Campbell CA et al (1995) Soil acidification from long-term use of anhydrous ammonia and urea. Soil Sci Soc Am J 59:1488–1494.  https://doi.org/10.2136/sssaj1995.03615995005900050039x CrossRefGoogle Scholar
  8. Camargo O, Moniz A, Jorge J, Valadares J (1986) Métodos de análise química, mineralógica e física de solos do IAC. Instituto Agronômico de Campinas, Campinas, BrazilGoogle Scholar
  9. Casanova ON, Ferrando MG (2003) Cuantificación mediante lisímetros del lavado de bases en suelos, bajo dos regímenes hídricos. Agrocienc Urug 7:39–48.  https://doi.org/10.2477/vol7iss2pp39-48
  10. Clapp CE, Allmaras RR, Layese MF, Linden DR, Dowdy RH (2000) Soil organic carbon and 13C abundance as related to tillage, crop residue, and nitrogen fertilization under continuous corn management in Minnesota. Soil Tillage Res 55:127–142CrossRefGoogle Scholar
  11. DIEA (2011) Anuario estadístico agropecuario 2011 (Agricultural statistic yearbook 2011). Ministerio de Agricultura, Ganadería y Pesca, Editorial Hemisferio Sur, Montevideo, Uruguay, http://www.mgap.gub.uy/unidad-organizativa/oficina-de-programacion-y-politicas-agropecuarias/publicaciones/anuarios-diea/anuario-2011. Accessed 29 Mar 2015
  12. DIEA (2015) Anuario estadístico agropecuario 2015 (Agricultural statistic yearbook 2015). Ministerio de Agricultura, Ganadería y Pesca, Editorial Hemisferio Sur, Montevideo, Uruguay, http://www.mgap.gub.uy/unidad-organizativa/oficina-de-programacion-y-politicas-agropecuarias/publicaciones/anuarios-diea/anuario2015, Accessed 29 Mar 2015
  13. DIEA (2018) Encuesta Agrícola “Primavera 2017” (Agriculture Survey Spring 2017), Ministerio de Agricultura, Ganadería y Pesca, Editorial Hemisferio Sur, Montevideo, Uruguay, http://www.mgap.gub.uy/sites/default/files/publicacion_primavera2017.pdf. Accessed 2 Feb 2019
  14. Ditzler C, Scheffe K, Monger HC (eds) (2017) Soil survey manual. Government Printing Office, Washington, D.C.Google Scholar
  15. Durán A, García-Préchac F (2007) Suelos del Uruguay: origen, clasificación, manejo y conservación. Editorial Hemisferio Sur, Montevideo, UruguayGoogle Scholar
  16. FAO, MVOTMA, DINOT (2015) Atlas de Cobertura del Suelo del Uruguay. Cobertura del Suelo y Detección de Cambios 2000–2011. Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente Dirección Nacional de Ordenamiento Territorial (MVOTMA), República Oriental del Uuguay, Montevideo, Uruguay, Uruguay. http://www.fao.org/3/a-i4372s.pdf. Accessed 29 Mar 2015
  17. FAOSTAT (2015) Statistics of Production, http://www.fao.org/faostat/en/#data/QC. Accessed 29 Mar 2015
  18. García F, Barbazán M (2016) Potassium research at Uruguay. In: 2016 Soil Science Congress of Russia. Belgorod, Belgorod Oblast, Russia, p 14. https://goo.gl/t69Yr2. Accessed 29 Mar 2015
  19. García F, Correndo A (2016) Cálculo de requerimientos nutricionales. http://lacs.ipni.net/article/LACS-1024. Accessed 29 Mar 2015
  20. Gardi C, Angelini M, Barceló S, et al (2013) Atlas de suelos de America Latina y el Caribe. Comisión Europea, Oficina de Publicaciones de la Unión Europea, Luxembourg.  https://doi.org/10.2788/37334
  21. Haynes RJ (1983) Soil acidification induced by leguminous crops. Grass Forage Sci 38:1–11.  https://doi.org/10.1111/j.1365-2494.1983.tb01614.x CrossRefGoogle Scholar
  22. Jackson M (1964) Análisis químico de suelos. Ediciones Omega, SA, Barcelona, SpainGoogle Scholar
  23. Lal R (2003) Soil erosion and the global carbon budget. Environ Int 29:437–450.  https://doi.org/10.1016/S0160-4120(02)00192-7 CrossRefGoogle Scholar
  24. Lefèvre C, Rekik F, Alcantara V, Wiese L (2017) Soil organic carbon: the hidden potential. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/3/a-i6937e.pdf. Accessed 29 Dec 2018.
  25. Liu G, Hanlon E (2015) Soil pH range for optimum commercial vegetable production. IFAS Extension, Universidad de Florida, Florida, USA. http://edis.ifas.ufl.edu/hs1207. Accessed 29 Mar 2015
  26. Luo Z, Wang E, Sun OJ (2010a) Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agr Ecosyst Environ 139:224–231.  https://doi.org/10.1016/j.agee.2010.08.006 CrossRefGoogle Scholar
  27. Luo Z, Wang E, Sun OJ (2010b) Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems: a review and synthesis. Geoderma 155:211–223.  https://doi.org/10.1016/j.geoderma.2009.12.012 CrossRefGoogle Scholar
  28. Luo Z, Wang E, Sun OJ et al (2011) Modeling long-term soil carbon dynamics and sequestration potential in semi-arid agro-ecosystems. Agric For Meteorol 151:1529–1544.  https://doi.org/10.1016/j.agrformet.2011.06.011 CrossRefGoogle Scholar
  29. MAP/DSF (1976). Carta de Reconocimiento de Suelos del Uruguay. Tomo III Apéndice- parte I y parte II. Descripciones, datos físicos y químicos de los suelos dominantes. Dirección de Suelos y Fertilizantes. Ministerio de Agricultura y Pesca, Montevideo, Uruguay. http://www.mgap.gub.uy/sites/default/files/multimedia/skmbt_c45111090913530.pdf. Accessed 15 Mar 2019
  30. Mbuthia LW, Acosta-Martínez V, DeBruyn J et al (2015) Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: implications for soil quality. Soil Biol Biochem 89:24–34.  https://doi.org/10.1016/j.soilbio.2015.06.016 CrossRefGoogle Scholar
  31. Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry. Pearson Education, EnglandGoogle Scholar
  32. Molfino JH (2013) Potencial agrícola, algunos cálculos para la agricultura en secano. Cangüé 33:14–18Google Scholar
  33. Ogle SM, Jay Breidt F, Eve MD, Paustian K (2003) Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Glob Change Biol 9:1521–1542.  https://doi.org/10.1046/j.1365-2486.2003.00683.x CrossRefGoogle Scholar
  34. Ortiz A, Caggiano R, Bossi J (2011) Manual didáctico de Geología para estudiantes de Agronomía. CSE, UdelaR, Montevideo, Uruguay. http://www.fagro.edu.uy/index.php/documentos/file/841-manual-didactico-de-geologia-para-estudiantes-de-agronomia. Accessed 10 Dec 2018
  35. Puget P, Lal R (2005) Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res 80:201–213.  https://doi.org/10.1016/j.still.2004.03.018 CrossRefGoogle Scholar
  36. RENARE (2008) Decreto 405/2008: uso responsable y sostenible de los suelos (Decree 405/2008: responsible and sustainable use of soils), http://www.mgap.gub.uy/unidad-organizativa/direccion-general-de-recursos-naturales/suelos/planes-de-uso-y-manejo-de-suelos/manual-de-medidas-exigibles. Accessed 29 Nov 2018
  37. Rice KC, Herman JS (2012) Acidification of Earth: an assessment across mechanisms and scales. Appl Geochem 27:1–14.  https://doi.org/10.1016/j.apgeochem.2011.09.001 CrossRefGoogle Scholar
  38. Sainz Rozas H (2013) ¿Cuál es el estado de la fertilidad de los suelos argentinos? Simposio Fertilidad 2013. Nutrición de cultivos para la intensificación productiva sustentable. Disponible en: http://www.fertilizar.org.ar/subida/evento/Simposio%20de%20Fertilidad%202013/SainzRozas.pdf. Verificado el 20 enero 2016
  39. Sparks D, Page A, Helmke P et al (1996) Methods of soil analysis: chemical methods, part 3. ASA and SSSA, Madison, WIGoogle Scholar
  40. Steffen W, Richardson K, Rockström J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855.  https://doi.org/10.1126/science.1259855 CrossRefGoogle Scholar
  41. Tarkalson DD, Payero JO, Hergert GW, Cassman KG (2006) Acidification of soil in a dry land winter wheat-sorghum/corn-fallow rotation in the semiarid U.S., great plains. Plant Soil 283:367–379.  https://doi.org/10.1007/s11104-006-0027-y CrossRefGoogle Scholar
  42. Tingwu L, Cong L, Weinan Z et al (2015) Analysis of soil acidification trend on the South Bank of Hongze Lake during recent 30 years. Agric Sci Technol 16:1955–1958Google Scholar
  43. Tinsley J (1967) Soil science manual of experiments. Department of Soil Science, University of Aberdeen, ScotlandGoogle Scholar
  44. Wraith JM, Or D (1998) Nonlinear parameter estimation using spreadsheet software. J Nat Resour Life Sci Educ 27:13–19Google Scholar
  45. Wright AF, Bailey JS (2001) Organic carbon, total carbon, and total nitrogen determinations in soils of variable calcium carbonate contents using a Leco CN-2000 dry combustion analyzer. Commun Soil Sci Plant Anal 32:3243–3258.  https://doi.org/10.1081/CSS-120001118 CrossRefGoogle Scholar
  46. Xiao C (2015) Soil organic carbon storage (sequestration) principles and management. Potential role for recycled organic materials in agricultural soils of Washington State. Waste 2 Resources Program, Washington State Department of Ecology, Olympia, Washington, USAGoogle Scholar
  47. Yang ZC, Zhao N, Huang F, Lv YZ (2015) Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain. Soil Tillage Res 146:47–52.  https://doi.org/10.1016/j.still.2014.06.011 CrossRefGoogle Scholar
  48. Zheng L, Wu W, Wei Y, Hu K (2015) Effects of straw return and regional factors onspatio-temporalvariability of soil organic matter in a high-yielding area of northern China. Soil Tillage Res 145:78–86CrossRefGoogle Scholar
  49. Zörb C, Senbayram M, Peiter E (2014) Potassium in agriculture—status and perspectives. J Plant Physiol 171:656–669.  https://doi.org/10.1016/j.jplph.2013.08.008 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Experimental Station Alberto Boerger INIA La Estanzuela, Laboratory of Waters, Plants and SoilsNational Institute of Agricultural Research (INIA)ColoniaUruguay
  2. 2.National Research Program on Rainfed Crop Production, Experimental Station Alberto Boerger INIA La EstanzuelaINIAColoniaUruguay
  3. 3.National Research Program on Production and Environmental Sustainability, Experimental Station Alberto Boerger INIA La EstanzuelaNational Institute of Agricultural Research (INIA)ColoniaUruguay

Personalised recommendations