Advertisement

Fertilizer management effects on oil palm yield and nutrient use efficiency on sandy soils with limited water supply in Central Kalimantan

  • Hsiao-Hang Tao
  • Christopher Donough
  • Joska Gerendas
  • Munir P. Hoffmann
  • Angger Cahyo
  • Hendra Sugianto
  • Ruli Wandri
  • Gatot Abdul Rahim
  • Myles Fisher
  • Reimund P. Rötter
  • Klaus Dittert
  • Lénaïc Pardon
  • Thomas Oberthür
Original Article
  • 71 Downloads

Abstract

Identifying optimal fertilizer management to ensure high nutrient use efficiency is important to reduce negative environmental impacts in oil palm (Elaeis guineensis) cultivation. A 4-year fertilizer trial was established in an oil palm plantation, located at a sandy area with occasional monthly water deficit in Central Kalimantan. We examined the responses of oil palm yield and nutrient use efficiency to fertilizer application frequency (standard frequency of 1–2 times yr−1 versus 4 times yr−1) and rate (standard rate of 136, 12, and 200 kg ha−1 yr−1 of N, P and K, respectively versus 80% of standard rate). There were no treatment effects on annual yield in fresh fruit bunch, bunch number, or individual bunch weight. Increasing fertilizer frequency did not increase nutrient use efficiency at the last 2 years of the trial. In contrast, reducing fertilizer rate resulted in higher nutrient use efficiency in K, compared to the standard treatment and increasing fertilizer frequency. Average concentrations of N, P, K, Mg, Ca, and Cl in leaflet under all treatments were above critical levels both in the beginning and at the end of the trial. Monthly yield in fresh fruit bunch correlated positively with soil water balance with correlation coefficients of 0.24–0.29, during the developmental period of inflorescence sex differentiation at 28–30 months before fruit maturity. Our study provides useful information for fertilizer management optimization in sandy areas with occasional water deficit, corresponding to most of the new expansion areas of oil palm in Southeast Asia.

Keywords

Soil water balance Nutrient use efficiency Partial factor productivity Partial nutrient balance Fertilizer application rate Fertilizer application frequency Inflorescence sex differentiation 

Notes

Acknowledgements

This research was funded by K+S KALI GmbH and the International Plant Nutrition Institute. HHT wrote the manuscript with inputs from CD and MF. HHT conducted statistical analysis. JG, TO, CD, and GAR designed the trial. CD and JG designed the on-site fertilizer blending method. CD, HS, AC, RW, GA implemented the field trial and collected the data. HS managed and summarized the data. HHT, CD, MF, MH, RR, KD, LP, TO interpreted the results.

Supplementary material

10705_2018_9948_MOESM1_ESM.docx (109 kb)
Supplementary material 1 (DOCX 108 kb)

References

  1. Bakar RA, Darus SZ, Kulaseharan S, Jamaluddin N (2011) Effects of ten year application of empty fruit bunches in an oil palm plantation on soil chemical properties. Nutr Cycl Agroecosyst 89:341–349.  https://doi.org/10.1007/s10705-010-9398-9 CrossRefGoogle Scholar
  2. Bessou C, Verwilghen A, Beaudoin-Ollivier L, Marichal R, Ollivier J, Baron V, Bonneau X, Carron M-P, Snoeck D, Naim M, Ketuk Aryawan AA, Raoul F, Giraudoux P, Surya E, Sihombing E, Caliman J-P (2017) Agroecological practices in oil palm plantations: examples from the field. OCL 24:D305.  https://doi.org/10.1051/ocl/2017024 CrossRefGoogle Scholar
  3. Breure CJ (2003) The search for yield of oil palm: Basic principles. In: Fairhurst TH, Hardter R (eds) Managing oil palms for large and sustainable yields. PPI/PPIC, Singapore, pp 59–98Google Scholar
  4. Caliman JP, Southworth A (1998) Effect of drought and haze on the performance of oil palm. In: International oil palm conference, BaliGoogle Scholar
  5. Cock J, Kam SP, Cook S, Donough C, Lim YL, Jines-Leon A, Lim CH, Primananda S, Yen BT, Mohanaraj SN, Samosir YMS, Oberthür T (2016) Learning from commercial crop performance: oil palm yield response to management under well-defined growing conditions. Agric Syst 149:99–111.  https://doi.org/10.1016/j.agsy.2016.09.002 CrossRefGoogle Scholar
  6. Combres JC, Pallas B, Rouan L, Mialet-Serra I, Caliman JP, Braconnier S, Soulié JC, Dingkuhn M (2013) Simulation of inflorescence dynamics in oil palm and estimation of environment-sensitive phenological phases: a model based analysis. Funct Plant Biol 40:263–279.  https://doi.org/10.1071/FP12133 CrossRefGoogle Scholar
  7. Comte I, Colin F, Grünberger O, Follain S, Whalen JK, Caliman JP (2013) Landscape-scale assessment of soil response to long-term organic and mineral fertilizer application in an industrial oil palm plantation, Indonesia. Agr Ecosyst Environ 169:58–68.  https://doi.org/10.1016/j.agee.2013.02.010 CrossRefGoogle Scholar
  8. Corley RHV, Tinker PBH (2015) The oil palm, 5th edn. Wiley-Blackwell, HobokenCrossRefGoogle Scholar
  9. Dobermann A, Dawe D, Roetter RP, Cassman KG (2000) Reversal of rice yield decline in a long-term continuous cropping experiment. Agronomy & Horticulture—Faculty Publications, p 91Google Scholar
  10. Donough C, Witt C, Fairhurst T (2010) Yield intensification in oil palm using BMP as a management tool. In: International oil palm conference, Yogyakarta, IndonesiaGoogle Scholar
  11. Donough CR, Oberthiir T, Cock J, Indrasuara K, Lubis A, Dolong T, Witt C, Fairhurst T (2011) Successful yield intensification with best management practices (BMP) for oil palm at six plantation locations representing major growing environments of Southeast Asia. In: PIPOC 2011 International Palm Oil Congress (Agriculture, Biotechnology & Sustainability), pp 464–469Google Scholar
  12. Dufour O, Frère J, Caliman J, Hornus P (1988) Présentation d’une méthode simplifiée de prévision de la production d’une plantation de pal- miers à huile à partir de la climatologie. Oléagineux 43:271–282Google Scholar
  13. Fairhurst TH, Härdter R (2003) Oil palm: management for large and sustainable yields. International Plant Nutrition Institute, Peachtree CornersGoogle Scholar
  14. FAO (2015) Food and Agriculture Organisation of the United Nations. FAOSTAT (WWW Document)Google Scholar
  15. Foster HL, Dolmat M (1986) The effect of different methods of placement and frequency of application of fertiliser to oil palm on an inland soil in Peninsula Malaysia. PORIM Bull 12:1–11Google Scholar
  16. Foster HL, Mohd Zaki G, Mohd Tayeb D (1984) The available water holding capacity of oil palm soils in Malaysia. PORIM Bulletin 8. Palm Oil Research Institute of MalaysiaGoogle Scholar
  17. Gerendás J, Donough CR, Oberthür T, Rahmadsyah GA, Indrasuara K, Lubis A, Dolong T (2013) Sulphur nutrition of oil palm in indonesia-the neglected macronutrient. Oil Palm Bull 67:5–10Google Scholar
  18. Hemptinne J, Ferwerda J (1961) Influence des précipitations sur les productions du palmier a huile (ElaeisJacq.). Oléagineux 16:431–437Google Scholar
  19. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276 CrossRefGoogle Scholar
  20. Hoffmann MP, Donough CR, Cook SE, Fisher MJ, Lim CH, Lim YL, Cock J, Kam SP, Mohanaraj SN, Indrasuara K, Tittinutchanon P, Oberthür T (2017) Yield gap analysis in oil palm: framework development and application in commercial operations in Southeast Asia. Agric Syst 151:12–19.  https://doi.org/10.1016/j.agsy.2016.11.005 CrossRefGoogle Scholar
  21. Huth NI, Banabas M, Nelson PN, Webb M (2014) Development of an oil palm cropping systems model: lessons learned and future directions. Environ Model Softw 62:411–419.  https://doi.org/10.1016/j.envsoft.2014.06.021 CrossRefGoogle Scholar
  22. IPNI (2014) Nutrient performance indicators: the importance of farm scale assessments, linked to soil fertility, productivity, environmental impact and the adoption of grower best management practices. International Plant Nutrition Institute (Issue Review)Google Scholar
  23. Lara LBL, Artaxo P, Martinelli L, Victoria R, Camargo P, Krusche A, Ayers G, Ferraz ES, Ballester M (2001) Chemical composition of rainwater and anthropogenic influences in the Piracicaba River Basin, Southeast Brazil. Atmos Environ 35:4937–4945.  https://doi.org/10.1016/S1352-2310(01)00198-4 CrossRefGoogle Scholar
  24. Legros S, Mialet-Serra I, Caliman JP, Siregar FA, Clément-Vidal A, Dingkuhn M (2009) Phenology and growth adjustments of oil palm (Elaeis guineensis) to photoperiod and climate variability. Ann Bot 104:1171–1182.  https://doi.org/10.1093/aob/mcp214 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Nelson BPN, Rhebergen T, Berthelsen S, Webb MJ, Banabas M, Oberthür T, Donough CR, Indrasuara K, Lubis A (2011) Soil acidification under oil palm: rates and effects on yield. Better Crops 4:22–25Google Scholar
  26. Ng SK, Thamboo S, Souza DP (1968) Nutrient contents of oil palms in Malaya II. Nutrients in vegetative tissues. Malay Agric J 46:332–391Google Scholar
  27. Ng PHC, Chew PS, Goh KJ, Kee KK (1999) Nutrient requirements and sustainability in mature oil palms—an assessment. Planter 75:331–345Google Scholar
  28. Pardon L, Ian Huth N, Netelenbos Nelson P, Banabas M, Gabrielle B, Bessou C (2017) Yield and nitrogen losses in oil palm plantations: main drivers and management trade-offs determined using simulation. Field Crops Res 210:20–32.  https://doi.org/10.1016/j.fcr.2017.05.016 CrossRefGoogle Scholar
  29. Pauli N, Donough C, Oberthür T, Cock J, Verdooren R, Rahmadsyah, Abdurrohim G, Indrasuara K, Lubis A, Dolong T, Pasuquin JM (2014) Changes in soil quality indicators under oil palm plantations following application of “best management practices” in a four-year field trial. Agric Ecosyst Environ 195:98–111.  https://doi.org/10.1016/j.agee.2014.05.005 CrossRefGoogle Scholar
  30. Pirker J, Mosnier A, Kraxner F, Havlik P, Obersteiner M (2016) What are the limits to oil palm expansion? Glob Environ Change 40:73–81.  https://doi.org/10.1016/j.gloenvcha.2016.06.007 CrossRefGoogle Scholar
  31. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  32. Sayer J, Ghazoul J, Nelson P, Klintuni Boedhihartono A (2012) Oil palm expansion transforms tropical landscapes and livelihoods. Glob Food Secur 1:114–119.  https://doi.org/10.1016/j.gfs.2012.10.003 CrossRefGoogle Scholar
  33. Schmidt JH (2010) Comparative life cycle assessment of rapeseed oil and palm oil. Int J Life Cycle Assess 15:183–197.  https://doi.org/10.1007/s11367-009-0142-0 CrossRefGoogle Scholar
  34. Schröder JJ (1999) Effect of split applications of cattle slurry and mineral fertilizer-N on the yield of silage maize in a slurry-based cropping system. Nutr Cycl Agroecosyst 53:209–218.  https://doi.org/10.1023/A:1009796021850 CrossRefGoogle Scholar
  35. Tao HH, Donough C, Hoffmann MP, Lim YL, Hendra S, Rahmadsyah, Abdurrohim G, Indrasuara K, Lubis A, Dolong T, Oberthür T (2017) Effects of best management practices on dry matter production and fruit production efficiency of oil palm. Eur J Agron.  https://doi.org/10.1016/j.eja.2017.07.008 Google Scholar
  36. Tarmizi AM, Mohd Tayeb D (2006) Nutrient demands of tenera oil palm planted on inland soils of Malaysia. J Oil Palm Res 18:204–209Google Scholar
  37. Teoh KC, Chew PS (1985) Investigations on areas and frequencies of fertiliser application in mature oil palms. In: International conference on soils and nutrition of perennial crops, Kuala Lumpur, pp 357–387Google Scholar
  38. Torbert HA, Hoeft RG, Heuvel RM Vanden, Mulvaney RL, Hollinger SE (1993) Short-term excess water impact on corn yield and nitrogen recovery. J Prod Agric 6:337–344CrossRefGoogle Scholar
  39. Trewartha G, Horn L (1980) Introduction to climate, 5th edn. McGraw Hill, New YorkGoogle Scholar
  40. USDA (1999) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. US Government Printing Office, Washington DCGoogle Scholar
  41. USDA (2016) United States Department of Agriculture Indonesia: Oilseeds and Products Annual Report 2016Google Scholar
  42. Woittiez LS, Wijk MT Van, Slingerland M, Noordwijk M Van, Ken E, Road ON, Asia S, Office R, Gede S, Barang S (2017) Yield gaps in oil palm: a quantitative review of contributing factors. Eur J Agron 83:57–77.  https://doi.org/10.1016/j.eja.2016.11.002 CrossRefGoogle Scholar
  43. Zuur AF, Ieno EN, Walker N, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R.  https://doi.org/10.1007/978-0-387-87458-6

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Hsiao-Hang Tao
    • 1
    • 2
  • Christopher Donough
    • 1
  • Joska Gerendas
    • 3
  • Munir P. Hoffmann
    • 2
  • Angger Cahyo
    • 4
  • Hendra Sugianto
    • 1
  • Ruli Wandri
    • 4
  • Gatot Abdul Rahim
    • 4
  • Myles Fisher
    • 5
  • Reimund P. Rötter
    • 2
    • 6
  • Klaus Dittert
    • 7
  • Lénaïc Pardon
    • 8
  • Thomas Oberthür
    • 1
  1. 1.International Plant Nutrition InstitutePenangMalaysia
  2. 2.Tropical Plant Production and Agricultural Systems Modelling (TROPAGS)University of GoettingenGöttingenGermany
  3. 3.K+S KALI GmbHKasselGermany
  4. 4.PT Sampoerna Agro TbkJakartaIndonesia
  5. 5.International Center for Tropical AgricultureCaliColombia
  6. 6.Centre of Biodiversity and Sustainable Land Use (CBL)University of GoettingenGöttingenGermany
  7. 7.Institute of Applied Plant NutritionUniversity of GoettingenGöttingenGermany
  8. 8.CIRAD, UPR Systèmes de pérennesMontpellierFrance

Personalised recommendations