Advertisement

Nutrient Cycling in Agroecosystems

, Volume 112, Issue 2, pp 147–164 | Cite as

Soil fertility status and nutrient input–output flows of specialised organic cropping systems: a review

  • Kurt MöllerEmail author
Research Article

Abstract

The management of specialised organic crops for vegetable and fruit production require the use of imported fertilizers. A wide range of fertilizers is currently available to organic farmers. These include bulky organic materials with a relatively low nutrient concentration commonly used as base dressing (e.g. composts, solid animal manures) and complementary commercial organic fertilizers with relatively high nutrient concentrations to adjust nutrient supply to crop requirements (e.g. feather meal, hoof and horn meal, vinasse, meat and bone meal, etc.). Nutrient imbalances are a major threat affecting the long term sustainability of horticultural and fruit cultivation systems. Major reasons for these imbalances are the biased element composition of base as well as complementary fertilizers in relation to the nutrient offtakes via harvested products. Gaseous nitrogen losses during manure management and gaseous as well as leaching nitrogen losses after application are major reasons for such nutrient imbalances, as they lead to a relative increase in the concentration of other elements. Conceptual weaknesses in the fertilizer approach in organic farming exist, namely the preferred application of slow release nitrogen fertilizers often rich in phosphorus. This review suggests that the current soil fertility approaches based on application of solid fertilizers and simultaneously a low rate of N inputs via N2 fixation do not foster balanced nutrient levels. The key challenge is to design cropping systems with a higher share of N inputs via biological N2 fixation, and to find fertilizers with a nutrient stoichiometry better suited to match the overall specific offtakes of fertilized crops.

Keywords

Organic farming Fertility management Nitrogen Phosphorus Vegetable production Organic orchards 

Notes

Acknowledgements

The author would like to thank Dr. Tobias Hartmann for the pre-review of the manuscript and the unknown reviewers for many valuable comments and edits.

References

  1. Abshahi A, Hills FJ, Broadbent FE (1984) Nitrogen utilization by wheat from residual sugarbeet fertilizer and soil incorporated sugarbeet tops. Agron J 76:954–958CrossRefGoogle Scholar
  2. Albert E, Grunert M (2013) Wirkung einer langjährig differenzierten mineralisch-organischen Düngung auf Ertrag, Humusgehalt, N-Bilanz und Nährstoffgehalte des Bodens. Arch Agron Soil Sci 59:1073–1098CrossRefGoogle Scholar
  3. Alburquerque JA, De la Fuente C, Campoy M, Carrasco L, Nájera I, Baixauli C, Bernal MP (2012) Agricultural use of digestate for horticultural crop production and improvement of soil properties. Eur J Agron 43:119–128CrossRefGoogle Scholar
  4. Alföldi T, Buschauer S (2011) Biowissen—Fakten und Hintergründe zur Biologischen Landwirtschaft und Verarbeitung [Facts and background on organic farming and processing]. FiBL, Frick (in German) Google Scholar
  5. Amlinger F, Götz B, Dreher P, Geszti J, Weissteiner Chr (2003) Nitrogen in biowaste and yard waste compost: dynamics of mobilisation and availability—a review. Eur J Soil Biol 39:107–116CrossRefGoogle Scholar
  6. Asmus F (1995) Ergebnisse aus einem langjährigen Dauerfeldversuch zur organisch-mineralischen Düngung auf Tieflehm-Fahlerde. Arch Acker Pfl Boden 39:359–367Google Scholar
  7. Badawi A (2010) Verluste der oberirdischen Biomasse von abfrostenden Begrünungspflanzen durch Ausgasung vor der Einarbeitung in den Boden, Universität WienGoogle Scholar
  8. Båth B, Malgeryd J, Stintzing AR, Åkerhielm H (2006) Surface mulching with red clover in white cabbage production. Nitrogen uptake, ammonia losses and the residual fertility effect in ryegrass. Biol Agric Hortic 23:287–304CrossRefGoogle Scholar
  9. Beck-Friis B, Pell M, Sonesson U, Jönsson H, Kirchmann H (2000) Formation and emission of N2O and CH4 from compost heaps of organic household waste. Environ Monit Assess 62:317–331CrossRefGoogle Scholar
  10. Beck-Friis B, Smars S, Jonsson H, Kirchmann H (2001) Gaseous emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J Agric Eng Res 78:423–430CrossRefGoogle Scholar
  11. Benke AP, Rieps A-M, Wollmann I, Petrova I, Zikeli S, Möller K (2017) Fertilizer value and nitrogen transfer efficiencies with clover-grass ley biomass based fertilizers. Nutr Cycl Agroecosyst 107:395–411CrossRefGoogle Scholar
  12. Berntsen J, Olesen JE, Petersen BM, Hansen EM (2006) Long-term fate of nitrogen uptake in catch crops. Eur J Agron 25:383–390CrossRefGoogle Scholar
  13. BioAustria (2016) ProduktionsrichtlinienGoogle Scholar
  14. Boyle FW, Lindsay WL (1986) Manganese phosphate equilibrium relationship in soils. Soil Sci Soc Am J 50:588–593CrossRefGoogle Scholar
  15. Cabrera ML, Kissel DE, Vigil MF (2005) Nitrogen mineralization from organic residues. J Environ Qual 34:75–79CrossRefGoogle Scholar
  16. Chang C, Janzen HH (1996) Long-term fate of nitrogen from annual feedlot manure applications. J Environ Qual 25:785–790CrossRefGoogle Scholar
  17. Cooper J, Reed EY, Hörtenhuber S, Lindenthal TH, Løes AK, Mäder P, Magid J, Oberson A, Kolbe H, Möller K (2018) Phosphorus availability on organically managed farms in Europe. Nutr Cycl Agroecosyst 110:227–239CrossRefGoogle Scholar
  18. Cuijpers WJM, van der Burgt GJHM, Voogt W (2008) Nitrogen balances in Dutch organic greenhouse production. In: Proceeding of the 16th IFOAM world congress, Modena, June 16–20, 2008Google Scholar
  19. Davis J, Abbott L (2006) Soil fertility in organic farming systems. In: Kristiansen P, Taji A, Reganold J (eds) Organic agriculture: a global perspective. CABI, Wallingford, pp 25–51CrossRefGoogle Scholar
  20. De Haan S, Lubbers J (1984) Refuse compost and sewage sludge as organic manures for arable crops on a heavy fluviatile clay in the Bommelerwaard, compared with farm yard manure, green manure and peat moss. Institute of Soil Fertility Report, 15-84Google Scholar
  21. Del Moral F, González V, Simón M, García I, Sánchez JA, De Haro S (2012) Soil properties after 10 years of organic versus conventional management in two greenhouses in Almeria (SE Spain). Arch Agron Soil Sci 58(Supp. 1):226–231CrossRefGoogle Scholar
  22. Diez Th, Krauss M (1997) Wirkung langjähriger Kompostdüngung auf Pflanzenertrag und Bodenfruchtbarkeit (Effect of long term compost application on yield and soil fertility). Agrobiol Res 50:78–84Google Scholar
  23. Eghball B, Power JF, Gilley JE, Doran JW (1997) Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J Environ Qual 26:189–193CrossRefGoogle Scholar
  24. Eklind Y, Kirchmann H (2000) Composting and storage of organic household waste with different litter amendments. II: nitrogen turnover and losses. Bioresour Technol 74:125–133CrossRefGoogle Scholar
  25. European Commission (2007) Council regulation (EC) No 834/2007 of 28 June 2007 on organic production and labelling of organic products and repealing regulation (EEC) No 2092/91Google Scholar
  26. European Commission (2013) Facts and figures on organic agriculture in the European Union. http://ec.europa.eu/agriculture/markets-and-prices/more-reports/pdf/organic-2013_en.pdf. Accessed 17th Mar 2016
  27. Feller C, Fink M (2000) Nmin target values for field vegetables. In: Workshop towards and ecologically sound fertilisation in field vegetable production 571, pp 195–201Google Scholar
  28. Frossard E, Bünemann E, Gunst L, Oberson A, Schärer M, Tamburini F (2016) The fate of fertilizer P in soils—the organic pathway. In: Schnug E (Hrsg.) Phosphorus: 100% zero, pp 41–61Google Scholar
  29. Granatstein D, Sánchez E (2009) Research knowledge and needs for orchard floor management in organic tree fruit systems. Int J Fruit Sci 9:257–281CrossRefGoogle Scholar
  30. Gutser R, Claassen N (1994) Langzeitversuche zum N-Umsatz von Wirtschaftsdüngern und kommunalen Komposten. Mitteilung Dtsch Bodenkundl Gesellsch 73:47–50Google Scholar
  31. Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and re-sidual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446CrossRefGoogle Scholar
  32. Hjorth M, Nielsen AM, Nyord T, Hansen MN, Nissen P, Sommer SG (2009) Nutrient value, odour emission and energy production of manure as influenced by anaerobic digestion and separation. Agron Sustain Dev 29:329–338CrossRefGoogle Scholar
  33. Hjorth M, Christensen KV, Christensen ML, Sommer SG (2011) Solid–liquid separation of animal slurry in theory and practice. Sustain Agric 2:953–986Google Scholar
  34. Kastori R (2004) Nitrogen volatilization from plants. Proc Natl Sci 107:111–118Google Scholar
  35. Kerschberger M, Hege U, Jungk A (1997) Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf. VDLUFA-StandpunktGoogle Scholar
  36. Kleinman PJ, Sharpley AN, Moyer BG, Elwinger GF (2002) Effect of mineral and manure phosphorus sources on runoff phosphorus. J Environ Qual 31:2026–2033CrossRefGoogle Scholar
  37. Körschens M (1987) N-Ausnutzung in Abhängigkeit von mineralischer und organischer N-Düngung im Verlaufe von vier Jahrzehnten im Statischen Düngungsversuch Lauchstädt. Arch Acker Pflanzenbau Bodenkd Berlin (Ost) 31:161–168Google Scholar
  38. Kulozik-Erben A (2007) Emissionen gasförmiger Stickstoff-Verbindungen (NH3 und N2O) aus Pflanzen in Abhängigkeit von der N-Versorgung und pflanzenartspezifischen Stoffwechseleigenschaften. Dissertation. Institut für Pflanzenernährung der Justus-Liebig-Universität Giessen, p 164Google Scholar
  39. Lampkin N (2002) Organic farming. Reprinted with amendments 2002. Ipswich, UK, Alexandria Bay, NY: Old Pond PubGoogle Scholar
  40. Larsson L, Ferm M, Kasimir-Klemedtsson Å, Klemedtsson L (1998) Ammonia and nitrous oxide emissions from gras and alfalfa mulches. Nutr Cycl Agroecosyst 41:46–51Google Scholar
  41. Marschner H (1996) Mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  42. Martins O, Dewes T (1992) Loss of nitrogenous compounds during composting of animal wastes. Bioresour Technol 42:103–111CrossRefGoogle Scholar
  43. Möller K, Müller T (2012) Effects of anaerobic digestion on digestate nutrient availability and crop growth. A review. Eng Life Sci 12:242–257CrossRefGoogle Scholar
  44. Möller K, Reents HJ (2009) Effects of various cover crops after peas on nitrate leaching and nitrogen supply to succeeding winter wheat or potato crops. J Plant Nutr Soil Sci 172:277–287CrossRefGoogle Scholar
  45. Möller K, Schultheiß U (2014) Organische Handelsdüngemittel im ökologischen Landbau—Charakterisierung und Empfehlungen für die Praxis. KTBL-Schrift 499. KTBL Darmstadt, p 392Google Scholar
  46. Möller K, Schultheiß U (2015) Chemical characterization of commercial organic fertilizers. Arch Agron Soil Sci 61:989–1012CrossRefGoogle Scholar
  47. Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30:1–16CrossRefGoogle Scholar
  48. Montemurro F, Fiore A, Campanelli G, Tittarelli F, Ledda L, Canali S (2013) Organic fertilization, green manure and vetch mulch to improve organic zucchini yield and quality. HortScience 48:1027–1033Google Scholar
  49. Montemurro F, Tittarelli F, Lopedota O, Verrastro V, Diacono M (2015) Agronomic performance of experimental fertilizers on spinach (Spinacia oleracea L.) in organic farming. Nutr Cycl Agroecosyst 102:227–241CrossRefGoogle Scholar
  50. Mullinix K, Granatstein D (2011) Potential nitrogen contributions from legumes in pacific northwest apple orchards. Int J Fruit Sci 11:74–87CrossRefGoogle Scholar
  51. Norvell WA, Dabkowska-Naskret H, Cary EE (1987) Effect of phosphorus and zinc fertilization on the solubility of Zn2+ in two alkaline soils. Soil Sci Soc Am J 51:584–588CrossRefGoogle Scholar
  52. Oelofse M, Jensen LS, Magid J (2013) The implications of phasing out conventional nutrient supply in organic agriculture: Denmark as a case. Organ Agric 3:41–55CrossRefGoogle Scholar
  53. Paustian K, Parton WJ, Persson J (1992) Modeling soil organic matter in organic-amended and nitrogen-fertilized long-term plots. Soil Sci Soc Am J 56:476–488CrossRefGoogle Scholar
  54. Pérez-Novo C, Fernández-Calviño D, Bermúdez-Couso A, López-Periago JE, Arias-Estévez M (2011) Phosphorus effect on Zn adsorption–desorption kinetics in acid soils. Chemosphere 83:1028–1034CrossRefGoogle Scholar
  55. Pizzeghello D, Berti A, Nardi S, Morari F (2014) Phosphorus-related properties in the profiles of three Italian soils after long-term mineral and manure applications. Agric Ecosyst Environ 189:216–228CrossRefGoogle Scholar
  56. Rahimi H, Pazira E, Tajik F (2000) Effect of soil organic matter, electrical conductivity and sodium adsorption ratio on tensile strength of aggregates. Soil Till Res 54:145–153CrossRefGoogle Scholar
  57. Redel YD, Schulz R, Müller T (2013) Does soil disturbance affect soil phosphorus fractions? Open J Soil Sci 3:263–272CrossRefGoogle Scholar
  58. Russels EJ (1937) Fünfzig Jahre Dauerfeldversuche in der Versuchsstation Woburn, einer Abteilung der Versuchsstation Rothamsted. Landw Jahrb 84:161–261Google Scholar
  59. Schnug E, Haneklaus SH (2016) The enigma of fertilizer phosphorus utilization. In: Phosphorus in agriculture: 100% Zero. Springer, Amsterdam, pp 7–26Google Scholar
  60. Schröder JJ, Holte LT, Janssen BH, Ten-Holte L (1997) Non-overwintering cover crops: a significant source of N. Neth J Agric Sci 45:231–248Google Scholar
  61. Schröder JJ, Jansen AG, Hilhorst GJ (2005) Long-term nitrogen supply from cattle slurry. Soil Use Manag 21:196–204CrossRefGoogle Scholar
  62. Schröder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in agriculture, a key requirement for its sustainable use. Chemosphere 84:822–831CrossRefGoogle Scholar
  63. Sigurnjak I, Michels E, Crappé S, Buysens S, Tack FMG, Meers E (2016) Utilization of derivatives from nutrient recovery processes as alternatives for fossil-based mineral fertilizers in commercial greenhouse production of Lactuca sativa L. Sci Hortic 198:267–276CrossRefGoogle Scholar
  64. Sommer SG (2001) Effect of composting on nutrient loss and nitrogen availability of cattle deep litter. Eur J Agron 14(2):123–133CrossRefGoogle Scholar
  65. Sonneveld C, Voogt W (2009) Plant nutrition of greenhouse crops. Springer, DordrechtCrossRefGoogle Scholar
  66. Statistisches Bundesamt (2018) Gemüseerhebung 2017, Fachserie 3 Reihe 3.1.3. Wiesbaden. www.destatis.de
  67. Stavridou E, Kristensen HL, Krumbein A, Schreiner M, Thorup-Kristensen K (2012) Effect of differential N and S competition in inter-and sole cropping of Brassica species and lettuce on glucosinolate concentration. J Agric Food Chem 60:6268–6278CrossRefGoogle Scholar
  68. Thomsen IK, Christensen BT (2004) Yields of wheat and soil carbon and nitrogen contents following long-term incorporation of barley straw and ryegrass catch crops. Soil Use Manag 20:432–438CrossRefGoogle Scholar
  69. Thorup-Kristensen K, Magid J, Jensen LS (2003) Catch crops and green manures as bio-logical tools in nitrogen management in temperate zones. Adv Agron 79:227–302CrossRefGoogle Scholar
  70. Tiquia SM, Tam NFY (2000) Fate of nitrogen during composting of chicken litter. Environ Pollut 110:535–541CrossRefGoogle Scholar
  71. Tittarelli F, Bath B, Ceglie FG, Garcia MC, Möller K, Reents HJ, Vedie H, Voogt W (2017) Soil fertility management in organic greenhouse: an analysis of the European context. Acta Hortic 1164:113–126CrossRefGoogle Scholar
  72. Trinchera A, Rivera CM, Marcucci A, Rea E (2012) Digested livestock manure as organic N-fertilizer for greenhouse lettuce. Acta Hort (ISHS) 952:377–383CrossRefGoogle Scholar
  73. Trinchera A, Baratella V, Rinaldi S, Renzaglia M, Marcucci A, Rea E (2013) Greenhouse lettuce: assessing nutrient use efficiency of digested livestock manure as organic N-fertiliser. In: II international symposium on organic greenhouse horticulture, vol 1041, pp 63–69.Google Scholar
  74. Van den Bossche A, Neve SD, Hofman G (2005) Soil phosphorus status of organic farming in Flanders: an overview and comparison with the conventional management. Soil Use Manag 21:415–421CrossRefGoogle Scholar
  75. vanden Nest TV, Ruysschaert G, Vandecasteele B, Houot S, Baken S, Smolders E, Merckx R (2016) The long term use of farmyard manure and compost: effects on P availability, orthophosphate sorption strength and P leaching. Agr Ecosyst Environ 216:23–33CrossRefGoogle Scholar
  76. von Fragstein und Niemsdorff P, Kristiansen P (2006) Crop agronomy in organic agriculture. In: Kristiansen P, Taji A, Reganold J (eds) Organic agriculture: a global perspective. CABI, Wallingford, pp 53–82CrossRefGoogle Scholar
  77. von Fragstein und Niemsdorff P, Geyer B, Reents HJ (2004) Status quo Ökologischer Gemüsebau—Betriebsbefragungen. Report project BLE with the grant no. 02OE222, Kassel-WitzenhausenGoogle Scholar
  78. Voogt W (2009) Water and mineral balances of organically grown vegetables under glass. Acta Hort 506:51–58Google Scholar
  79. Voogt W (2014) Soil fertility management in organic greenhouse crops; a case study on fruit vegetables. In: II international symposium on organic greenhouse horticulture, vol 1041, pp 21–35Google Scholar
  80. Voogt W, de Visser PHE, van Winkel A, Cuijpers WJM, van de Burgt GJHM (2011) Nutrient management in organic greenhouse production: navigation between constraints. Acta Hort (ISHS) 915:75–82CrossRefGoogle Scholar
  81. Watson CA, Atkinson D, Gosling P, Jackson LR, Rayns FW (2002) Managing soil fertility in organic farming systems. Soil Use Manag 18:239–247CrossRefGoogle Scholar
  82. Whalen JK, Chang C, Clayton GW, Carefoot JP (2000) Cattle manure amendments can increase the pH of acid soils. Soil Sci Soc Am J 64:962–966CrossRefGoogle Scholar
  83. Wiesler F, Appel T, Dittert K, Ebertseder T, Müller T, Nätscher L, Olfs HW, Rex M, Schweitzer K, Steffens D, Taube F, Zorn W (2017) Phosphordüngung nach Bodenuntersuchung und Pflanzenbedarf. Verband deutscher landwirtschaftlicher Untersuchungs-und Forschungsanstalten (VDLUFA) Standpunkt, Darmstadt, p 11Google Scholar
  84. Willer H, Lernoud J (2014) The world of organic agriculture. Statistics and emerging trends. 2014. FIBL-IFOAM Report. Research Institute of Organic Agriculture (FIBL) Frick, and International Federation of Organic Agriculture Movements, Bonn, p 302Google Scholar
  85. Willms M (2005) Landwirtschaftliche Ursachen hoher Sulfatgehalte in gefördertem Trinkwasser. PhD thesis, Universität GöttingenGoogle Scholar
  86. Yan F, Schubert S, Mengel K (1996) Soil pH increase due to biological decarboxalation of organic anions. Soil Biol Biochem 28:611–624CrossRefGoogle Scholar
  87. Zikeli S, Deil L, Möller K (2017) The challenge of imbalanced nutrient flows in organic farming systems: a study of Organic greenhouses in Southern Germany. Agr Ecosyst Environ 244:1–13CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of Crop Science, Fertilization and Soil Matter DynamicsUniversity of HohenheimStuttgartGermany
  2. 2.Center for Agricultural Technology AugustenbergInstitute of Applied Crop ScienceRheinstetten-ForchheimGermany

Personalised recommendations