Nutrient Cycling in Agroecosystems

, Volume 111, Issue 2–3, pp 203–215 | Cite as

Can litter production and litter decomposition improve soil properties in the rubber plantations of different ages in Côte d’Ivoire?

  • Julien K. N’DriEmail author
  • Arnauth M. Guéi
  • Ettien F. Edoukou
  • Joseph G. Yéo
  • Kévin K. N’Guessan
  • Jan Lagerlöf
Original Article


Litter production and litter decomposition influence the availability of nutrients in the soil. The investigation aimed at characterizing the dynamics of leaf litter decomposition, and soil physico-chemical and biological parameters in rubber plantations of different ages. During a 12-months’ period, field studies were done in 7-, 12-, and 25-year-old rubber plantations. For measuring of litter decomposition and input from aboveground, 324 litter bags and 27 litter traps (1 m × 1 m) were placed in 3 sampling areas per age class of rubber plantations. The soil parameters were also characterized. The results showed that the annual litter production and the amounts of organic carbon in leaves increased with the aging of the plantations. The annual decomposition constant (k) ranged from 0.0381 ± 0.0040 year−1 in the 25-year-old plantations to 0.0767 ± 0.0111 year−1 in the 7-year-old plantations. The annually decomposed litter mass varied between 2.7 ± 0.3 t ha−1 year−1 in the 12-year-old plantations to 4.2 ± 0.3 t ha−1 year−1 in the 25-year-old plantations. The soil of the 25-year-old plantations showed higher values of most physico-chemical and biological variables as compared to the 7-year-old plantations: annual litter production (+ 32%), annual litter mass decomposed (+ 11%), annual carbon (+ 15%) and nitrogen (+ 11%) inputs, soil organic carbon (+ 52%), total nitrogen (+ 32%), soil organic matter (+ 52%), soil water content (+ 74%), and the total density of soil invertebrates (+ 121%). The results indicate an improvement of soil properties with the aging of the rubber plantations and the importance of this agricultural system for carbon sequestration.


Litter production Litter decomposition Nutrients in the leaves Carbon and nitrogen inputs Soil properties Rubber plantations 



The authors gratefully acknowledge the financial support of International Foundation for Science (IFS) through the Project Ref. D/5287-1 and titled “Effect of age of rubber plantations on the soil microarthropods diversity and the recycling of the organic matter in the Grand Lahou department”, which made this study possible. Thank to farmers, SODEFOR and IDH staff for their involvement in identifying suitable plantations for this work. A big thank you goes out to Prof Jérôme E. Tondoh for his assistance during the field works and data analysis. Thanks to Dr. Martine Kah Touao GAUZE, Director of the Ecological Research Center for hosting the project in her center.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724CrossRefGoogle Scholar
  2. Allen K, Corre MD, Tjoa A, Veldkamp E (2015) Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS ONE. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson JM, Ingram JSI (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CABI, WallingfordGoogle Scholar
  4. Assié KH, Angui P, Tamia AJ (2008) Effects of cultivation and natural constraints on some physical properties of a ferrallitic soil in Mid West of Côte d’Ivoire: consequences on soil degradation. Eur J Sci Res 23:149–166Google Scholar
  5. Attignon SE, Weibel D, Lachat T, Sinsin B, Nagel P, Peveling R (2004) Leaf litter breakdown in natural and plantation forests of the Lama forest reserve in Benin. Appl Soil Ecol 27:109–124CrossRefGoogle Scholar
  6. Bardgett RD (2005) The biology of soil. A community and ecosystem approach. Oxford University Press, OxfordCrossRefGoogle Scholar
  7. Bedano JC, Ruf A (2007) Soil predatory mite communities (Acari: Gamasina) in agroecosystems of Central Argentina. Appl Soil Ecol 36:22–31CrossRefGoogle Scholar
  8. Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manag 133:13–22CrossRefGoogle Scholar
  9. Bernhard-Reversat F, Loumeto JJ (2002) The litter system in African forest-tree plantations. In: Reddy MV (ed) Management of tropical plantation-forests and their soil litter system. Science Publishers Inc, Hauppauge, pp 11–39Google Scholar
  10. Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B 363:1839–1848CrossRefGoogle Scholar
  11. Brindoumi JKA (2015) Les facteurs du développement de l’hévéaculture en Côte d’Ivoire de 1994 à 2012. Eur Sci J 11:202–219Google Scholar
  12. Campbell BM, Beare DJ, Bennett EM, Hall-Spencer JM, Ingram JSI, Jaramillo F, Ortiz R, Ramankutty N, Sayer JA, Shindell D (2017) Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol Soc. CrossRefGoogle Scholar
  13. Chaudhuri PS, Nath S (2011) Community structure of earthworms under rubber plantations and mixed forests in Tripura, India. J Environ Biol 32:537–541PubMedGoogle Scholar
  14. Chaudhuri PS, Bhattacharjee S, Dey A, Chattopadhyay S, Bhattacharya D (2013) Impact of age of rubber (Hevea brasiliensis) plantation on earthworm communities of West Tripura (India). J Environ Biol 34:59–65PubMedGoogle Scholar
  15. Chiti T, Grieco E, Perugini L, Rey A, Valentini R (2014) Effect of the replacement of tropical forests with tree plantations on soil organic carbon levels in the Jomoro district, Ghana. Plant Soil 375:47–59CrossRefGoogle Scholar
  16. CNRA (2013) Le Centre National de Recherche Agronomique en 2012. Nous inventons aujourd’hui l’agriculture de demain. Accessed 25 Jan 2015
  17. Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology, 2nd edn. Academic Press, BurlingtonGoogle Scholar
  18. Dash MC, Behera N (2013) Carbon sequestration and role of earthworms in Indian land uses: a review. Ecoscan 7:1–7Google Scholar
  19. Ettian MK, Soulemane O, Tahou TM (2009) Influence du régime alimentaire sur l’intervalle de parturition des aulacodes en captivité dans la région de Grand-Lahou (Côte d’Ivoire, Afrique de l’Ouest). J Anim Plant Sci 4:311–319Google Scholar
  20. Gallardo JF, Saavedra J, Martin-Patino T, Millan A (1987) Soil organic matter determination. J Com Soil Sci Plant Anal 18:699–707CrossRefGoogle Scholar
  21. Gilot C, Lavelle P, Blancart E, Keli J, Kouassi P, Guillaume G (1995) Biological activity of soil under plantations in Côte d’Ivoire. Acta Zool Fennica 196:186–189Google Scholar
  22. Gréggio TC, Assis LC, Nahas E (2008) Decomposition of the rubber tree Hevea brasiliensis litter at two depths. Chilean J Agric Res 68:128–135CrossRefGoogle Scholar
  23. Hamilton RL, Trimmer M, Bradley C, Pinay G (2016) Deforestation for oil palm alters the fundamental balance of the soil N cycle. Soil Biol Biochem 95:223–232CrossRefGoogle Scholar
  24. Keenan RJ, Reams GA, Achard F, De Freitas JV, Grainger A, Lindquist E (2015) Dynamics of global forest area: results from the FAO Global Forest Resources Assessment 2015. For Ecol Manag 352:9–20CrossRefGoogle Scholar
  25. Konan KS, Kouassi KL, Kouamé KI, Kouassi AM, Gnakri D (2013) Hydrologie et hydrochimie des eaux dans la zone de construction du chenal du port de pêche de Grand-Lahou, Côte d’Ivoire. Int J Biol Chem Sci 7:819–831Google Scholar
  26. Kongsager R, Napier J, Mertz O (2013) The carbon sequestration potential of tree crop plantations. Mitig Adapt Strateg Glob Change 18:1197–1213CrossRefGoogle Scholar
  27. Kotowska MM, Leuschner C, Triadiati T, Hertel D (2016) Conversion of tropical lowland forest reduces nutrient return through litterfall, and alters nutrient use efficiency and seasonality of net primary production. Oecologia 180:601–618CrossRefPubMedGoogle Scholar
  28. Krashevska V, Klarner B, Widyastuti R, Maraun M, Scheu S (2015) Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol Fertil Soils. CrossRefGoogle Scholar
  29. Krashevska V, Klarner B, Widyastuti R, Maraun M, Scheu S (2016) Changes in structure and functioning of protist (testate amoebae) communities due to conversion of lowland rainforest into rubber and oil palm plantations. PLoS ONE. PubMedPubMedCentralCrossRefGoogle Scholar
  30. Kurzatkowski D, Martius C, Höfer H, Garcia M, Förster B, Beck L, Vlek P (2004) Litter decomposition, microbial biomass and activity of soil organisms in three agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 69:257–267CrossRefGoogle Scholar
  31. Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Dhillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193Google Scholar
  32. Li Y, Lan G, Xia Y (2016) Rubber trees demonstrate a clear retranslocation under seasonal drought and cold stresses. Front Plant Sci. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Liu H, Blagodatsky S, Giese M, Liuc F, Xu J, Cadisch G (2016) Impact of herbicide application on soil erosion and induced carbon loss in a rubber plantation of Southwest China. CATENA 145:180–192CrossRefGoogle Scholar
  34. Mande HK, Abdullah AM, Aris AZ, Nuruddin AA (2014) A comparison of soil CO2 efflux rate in young rubber plantation, oil palm plantation, recovering and primary forest ecosystems of Malaysia. Pol J Environ Stud 23:1649–1657Google Scholar
  35. Martius C, Höfer H, Garcia MVB, Römbke J, Hanagarth W (2004) Litter fall, litter stocks and decomposition rates in rainforest and agroforestry sites in central Amazonia. Nutr Cycl Agroecosyst 68:137–154CrossRefGoogle Scholar
  36. Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part II, 2nd edn. American Society of Agronomy, Madison, pp 539–580Google Scholar
  37. Podong C, Poolsiri R (2012) Effects of land use types on carbon and nitrogen content in litter in huai lam kradonsubwatershed, lower northern Thailand. In: International conference on eco-systems and biological sciences penang (Malaysia) May 19–20, pp 44–50Google Scholar
  38. Podong C, Poolsiri R, Katzensteiner K, Pengthamkeerati P, Thongdeenok P (2013) Species diversity and litter dynamics in secondary mixed deciduous forest, thung salaeng lung national park, northern, Thailand. Folia For Pol 55:196–204Google Scholar
  39. Ruf F (2009) L’adoption de l’hévéaculture en Côte d’Ivoire Prix, imitation et changement écologique. Session: Innovation des agricultures familiales et politiques publiques. Le cas de l’hévéaculture. 3èmes journées de recherches en sciences sociales. INRA-SFER-CIRAD, Montpellier, France. Accessed 15 Feb 2015
  40. Tié Bi T, Ornont H (1987) Etude des sols de parcelles d’hévéa en basse Côte d’Ivoire. In: Reddy MV (ed) Management of tropical plantation-forests and their soil litter system. Science Publishers Inc, Hauppauge, pp 16–26Google Scholar
  41. Tondoh EJ, Kouamé FN, Guéi AM, Sey B, Koné AW, Gnessougou N (2015) Ecological changes induced by full-sun cocoa farming in Côte d’Ivoire. Glob Ecol Conserv 3:575–595CrossRefGoogle Scholar
  42. Torreta NK, Takeda H (1999) Carbon and nitrogen dynamics of decomposing leaf litter in a tropical hill evergreen forest. Eur J Soil Biol 35:57–63CrossRefGoogle Scholar
  43. Ukonmaanaho L, Merilä P, Nöjd P, Nieminen TM (2008) Litterfall production and nutrient return to the forest floor in Scots pine and Norway spruce stands in Finland. Boreal Environ Res 13:67–91Google Scholar
  44. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic titration method. Soil Sci 34:29–38CrossRefGoogle Scholar
  45. Waneukem V, Ganry F (1992) Relations entre les formes d’azote organique du sol et l’azote absorbé par la plante dans un sol ferrallitique du Sénégal. Cirad-CA, UR facteurs et conditions du milieu. Cahiers ORSTOM ser Pédologie 27:97–107Google Scholar
  46. Yang X, Chen J (2009) Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biol Biochem 41:910–918CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Unité de Formation et de Recherche (UFR) des Sciences de la NatureUniversité Nangui AbrogouaAbidjan 02Côte d’Ivoire
  2. 2.Centre de Recherche en EcologieAbidjan 08Côte d’Ivoire
  3. 3.Université Jean Lorougnon GuédéDaloaCôte d’Ivoire
  4. 4.Department of EcologySwedish University of Agricultural Sciences (SLU)UppsalaSweden

Personalised recommendations