Advertisement

Nutrient Cycling in Agroecosystems

, Volume 110, Issue 1, pp 51–69 | Cite as

Effects of catch crops on silage maize (Zea mays L.): yield, nitrogen uptake efficiency and losses

  • Martin KomaindaEmail author
  • Friedhelm Taube
  • Christof Kluß
  • Antje Herrmann
Original Article

Abstract

Under the climatic conditions of north-western Europe, silage maize (Zea mays L.) production optimized with respect to nitrogen (N) fertilization and crop rotation is required to reduce N losses. Whether winter catch crops (CC) can serve as a beneficial biological tool in terms of N-loss abatement as well as maize yield also under optimized N management, is unclear. Therefore, a 2-year field experiment was conducted to study the short-term effects of a continuous maize-catch cropping system on maize yield performance, N2O emission and N leaching, as affected by maize harvest/CC sowing date (10, 20, 30 September and 15 October, respectively, hd1–hd4) and CC species (rye, Secale cereale L. and Italian ryegrass, Lolium multiflorum Lam.). Treatments without CC served as control and N fertilization was applied as synthetic N to better adjust to maize N demand. The CC treatment (with or without) had no effect on maize dry matter and N yields, but the N uptake efficiency of maize responded significantly to the N accumulation (Ntot) of CC. Nitrate leaching mostly stayed below the critical load value for EU drinking water and rye significantly reduced nitrate leaching, given that environmental conditions allowed sufficiently high CC biomass accumulation. Annual nitrous oxide emission was unaffected by CC treatment. Restricted N fertilization of maize following CC led to N deficiency, since CC decomposition obviously was not synchronized with maize N demand. Under the given environmental conditions, rye may serve as beneficial CC in continuous maize cropping even in already optimized N management.

Keywords

Cover crop Yield Quality Green manuring Nitrate leaching Nitrous oxide 

Notes

Acknowledgements

This research project was funded by the Ministry of Energy, Agriculture, Environment and Rural Area of Schleswig-Holstein, which is gratefully acknowledged. We are grateful to M. Hasler for his statistical advice and special thanks go to A. Hopkins for linguistic editing, to P. Voss and K. Makoben for laboratory analysis, to B. Pitann for expert technical assistance in mass spectrometry and to R. Loges for support in NIRS.

References

  1. Andraski TW, Bundy LG (2005) Cover crop effects on corn yield response to nitrogen on an irrigated sandy soil. Agron J 97:1239–1244. doi: 10.2134/agronj2005.0052 CrossRefGoogle Scholar
  2. Andrews M, Morton JD, Lieffering M, Bisset L (1992) The partitioning of nitrate assimilation between root and shoot of a range of temperate cereals and pasture grasses. Ann Bot 70:271–276CrossRefGoogle Scholar
  3. Andrews M, Raven JA, Lea PJ (2013) Do plants need nitrate? The mechanisms by which nitrogen form affects plants. Ann Appl Biol 163:174–199. doi: 10.1111/aab.12045 CrossRefGoogle Scholar
  4. Baggs EM, Watson CA, Rees RM (2000) The fate of nitrogen from incorporated cover crop and green manure residues. Nutr Cycl Agroecosyst 56:153–163. doi: 10.1023/A:1009825606341 CrossRefGoogle Scholar
  5. Basche AD, Miguez FE, Kaspar TC, Castellano MJ (2014) Do cover crops increase or decrease nitrous oxide emissions? A meta-analysis. J Soil Water Conserv 69:471–482. doi: 10.2489/jswc.69.6.471 CrossRefGoogle Scholar
  6. Basche AD, Archontoulis SV, Kaspar TC, Jaynes DB, Parkin TB, Miguez FE (2016a) Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States. Agric Ecosyst Environ 218:95–106. doi: 10.1016/j.agee.2015.11.011 CrossRefGoogle Scholar
  7. Basche AD, Kaspar TC, Archontoulis SV, Jaynes DB, Sauer TJ, Parkin TB, Miguez FE (2016b) Soil water improvements with the long-term use of a winter rye cover crop. Agric Water Manag 172:40–50. doi: 10.1016/j.agwat.2016.04.006 CrossRefGoogle Scholar
  8. Bretz F, Hothorn T, Westfall P (2011) Multiple comparison using R. Chapman and Hall CRC, LondonGoogle Scholar
  9. Cavalli D, Cabassi G, Borrelli L, Geromel G, Bechini L, Degano L, Gallina PM (2016) Nitrogen fertilizer replacement value of undigested liquid cattle manure and digestates. Eur J Agron 73:34–41. doi: 10.1016/j.eja.2015.10.007 CrossRefGoogle Scholar
  10. Chen G, Weil RR (2010) Penetration of cover crop roots through compacted soils. Plant Soil 331:31–43. doi: 10.1007/s11104-009-0223-7 CrossRefGoogle Scholar
  11. Chen G, Weil RR (2011) Root growth and yield of maize as affected by soil compaction and cover crops. Soil Tillage Res 117:17–27. doi: 10.1016/j.still.2011.08.001 CrossRefGoogle Scholar
  12. Chen S, Lin S, Loges R, Reinsch T, Hasler M, Taube F (2016) Independence of seasonal patterns of root functional traits and rooting strategy of a grass-clover sward from sward age and slurry application. Grass Forage Sci. doi: 10.1111/gfs.12222 Google Scholar
  13. Constantin J, Mary B, Laurent F, Aubrion G, Fontaine G, Kerveillant P, Beaudoin N (2010) Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agric Ecosyst Environ 135:268–278. doi: 10.1016/j.agee.2009.10.005 CrossRefGoogle Scholar
  14. Constantin J, Beaudoin N, Launay M, Duval J, Mary B (2012) Long-term nitrogen dynamics in various catch crop scenarios: test and simulations with STICS mode in a temperate climate. Agric Ecosyst Environ 147:36–46. doi: 10.1016/j.agee.2011.06.006 CrossRefGoogle Scholar
  15. Cougnon M, De Swaef D, Lootens P, Baert J, De Frenne P, Shahidi R, Roldán-Ruiz I, Reheul D (2016) In situ quantification of forage grass root biomass, distribution and diameter classes under two N fertilisation rates. Plant Soil. doi: 10.1007/s11104-016-3034-7 Google Scholar
  16. Dobbie KE, McTaggart IP, Smith KA (1999) Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. J Geophys Res 104:26891–26899. doi: 10.1029/1999JD900378 CrossRefGoogle Scholar
  17. DÜV—German fertilizer ordinance from 10.01.2006. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis beim Düngen (Düngeverordnung—DüV). www.gesetze-im-internet.de/d_v/
  18. Farsad A, Randhir TO, Herbert SJ, Hashemi M (2011) Spatial modelling of critical planting date for winter rye cover crop to enhance nutrient recovery. Agron J 103:1252–1257. doi: 10.2134/agronj2010.0433 CrossRefGoogle Scholar
  19. Finney DM, White CM, Kaye JP (2016) Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron J 108:39–52. doi: 10.2134/agronj15.0182 CrossRefGoogle Scholar
  20. Fronning BE, Thelen KD, Min D-H (2008) Use of manure, compost, and cover crops to supplant crop residue carbon in corn stover removed cropping systems. Agron J 100:1703–1710. doi: 10.2134/agronj2008.0052 CrossRefGoogle Scholar
  21. Gabriel JL, Quemada M (2011) Replacing bare fallow with cover crops in a maize cropping system: Yield, N uptake and fertiliser rate. Eur J Agron 34:133–143. doi: 10.1016/j.eja.2010.11.006 CrossRefGoogle Scholar
  22. Gabriel JL, MuÑoz-Carpena R, Quemada M (2012) The role of cover crops in irrigated systems: water balance, nitrate leaching and soil mineral nitrogen accumulation. Agric Ecosyst Environ 155:50–61. doi: 10.1016/j.agee.2012.03.021 CrossRefGoogle Scholar
  23. Gauder M, Butterbach-Bahl K, Graeff-Hönninger S, Claupein W, Wiegel R (2012) Soil-derived trace gas fluxes from different energy crops—results from a field experiment in Southwest Germany. Glob Change Biol 4:289–301. doi: 10.1111/j.1757-1707.2011.01135.x CrossRefGoogle Scholar
  24. Herrmann A, Sieling K, Wienforth B, Taube F, Kage H (2013) Short-term effects of biogas residue application on yield performance and N balance parameters of maize in different cropping systems. J Agric Sci 151:449–462. doi: 10.1017/S0021859612000548 CrossRefGoogle Scholar
  25. IPCC—Intergovernmental Panel on Climate Change, 2006. Chapter 11: N2O emissions from managed soils, and CO2 emissions from lime and urea application. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
  26. Jahanzad E, Barker AV, Hashemi M, Eaton T, Sadeghpour A, Weis SA (2016) Nitrogen release dynamics and decomposition of buried and surface cover crop residues. Agron J 108:1735–1741. doi: 10.2134/agronj2016.01.0001 CrossRefGoogle Scholar
  27. Jarecki MK, Parkin TB, Chan ASK, Kaspar TC, Moorman TB, Singer JW, Kerr BJ, Hatfield JL, Jones R (2009) Cover crop effects on nitrous oxide emission from a manure treated Mollisol. Agric Ecosyst Environ 134:29–35. doi: 10.1016/j.agee.2009.05.008 CrossRefGoogle Scholar
  28. Jokela WE, Grabber JH, Karlen DL, Balser TC, Palmquist DE (2009) Cover crop and liquid manure effects on soil quality indicators in a corn silage system. Agron J 101:727–737. doi: 10.2134/agronj2008.0191 CrossRefGoogle Scholar
  29. Kobayashi H, Takahashi Y, Matsumoto K, Nishiguchi Y (2008) Changes in nutritive value of Italian ryegrass (Lolium multiflorum Lam.) during overwintering period. Plant Prod Sci 11:228–231. doi: 10.1626/pps.11.228 CrossRefGoogle Scholar
  30. Komainda M, Taube F, Kluß C, Herrmann A (2016a) Above- and belowground nitrogen uptake of winter catch crops sown after silage maize as affected by sowing date. Eur J Agron 79:31–42. doi: 10.1016/j.eja.2016.05.007 CrossRefGoogle Scholar
  31. Komainda M, Taube F, Kluß C, Herrmann A (2016b) The effects of maize (Zea mays L.) hybrid and harvest date on above- and belowground biomass dynamics, forage yield and quality—a trade-off for carbon inputs? (submitted) Google Scholar
  32. Kramberger B, Lukac B, Gruskovnjak D, Gselman A (2008) Effects of Italian ryegrass and date of plow-in on soil mineral nitrogen and sugarbeet yield and quality. Agron J 100:1332–1338. doi: 10.2134/agronj2007.0314 CrossRefGoogle Scholar
  33. Kramberger B, Gselman A, Janzekovic M, Kaligaric M, Bracko B (2009) Effects of cover crops on soil mineral nitrogen and on the yield and nitrogen content of maize. Eur J Agron 31:103–109. doi: 10.1016/j.eja.2009.05.006 CrossRefGoogle Scholar
  34. Kramberger B, Gselman A, Kristl J, Lešnik M, Šuštar V, Muršec M, Podvršnik M (2014) Winter cover crop: the effects of grass–clover mixture proportion and biomass management on maize and the apparent residual N in the soil. Eur J Agron 55:63–71. doi: 10.1016/j.eja.2014.01.001 CrossRefGoogle Scholar
  35. Krueger ES, Ochsner TE, Porter PM, Baker JM (2011) Winter rye cover crop management influences on soil water, soil nitrate and corn development. Agron J 103:316–323. doi: 10.2134/agronj2010.0327 CrossRefGoogle Scholar
  36. Kuo S, Jellum EJ (2002) Influence of winter cover crop and residue management on soil nitrogen availability and corn. Agron J 94:501–508. doi: 10.2134/agronj2002.5010 CrossRefGoogle Scholar
  37. Kuo S, Huang B, Bembenek R (2001) Effect of winter cover crops on soil nitrogen availability, corn yield, and nitrate leaching. Sci World 1:22–29. doi: 10.1100/tsw.2001.267 CrossRefGoogle Scholar
  38. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1626. doi: 10.1126/science.1097396 CrossRefPubMedGoogle Scholar
  39. Liesch AM, Krueger ES, Ochsner TE (2011) Soil structure and physical properties under rye-corn silage double-cropping systems. Soil Sci Soc Am J 75:1307–1314. doi: 10.2136/sssaj2010.0292 CrossRefGoogle Scholar
  40. Linsler D, Kaiser M, Adruschkewitsch R, Piegholdt C, Ludwig B (2016) Effects of cover crop growth and decomposition on the distribution of aggregate size fractions and soil microbial carbon dynamics. Soil Use Manag. doi: 10.1111/sum.12267 Google Scholar
  41. Löpmeier F-J (1994) Berechnung der Bodenfeuchte und Verdunstung mittels agrarmeteorologischer Modelle. Z Bewäss 29:157–167Google Scholar
  42. Ma BL, Dwyer LM, Gregorich EG (1999) Soil Nitrogen amendment effects on nitrogen uptake and grain yield of maize. Agron J 91:650–656. doi: 10.2134/agronj1999.914650x CrossRefGoogle Scholar
  43. Malone RW, Jaynes DB, Kaspar TC, Thorp KR, Kladivko E, Ma L, James DE, Singer J, Morin XK, Searchinger T (2014) Cover crops in the upper Midwestern United States: Simulated effect on nitrate leaching with artificial drainage. J Soil Water Conserv 69:292–305. doi: 10.2489/jswc.69.4.292 CrossRefGoogle Scholar
  44. Malpassi RN, Kaspar TC, Parkin TB, Cambardella CA, Nubel NA (2000) Oat and rye root decomposition effects on nitrogen mineralization. Soil Sci Soc Am J 64:208–215. doi: 10.2136/sssaj2000.641208x CrossRefGoogle Scholar
  45. Marstorp H (1996) Influence of soluble carbohydrates, free amino acids, and protein content on the decomposition of Lolium multiflorum shoots. Biol Fertil Soils 21:257–263. doi: 10.1007/BF00334901 CrossRefGoogle Scholar
  46. Martinez J, Guiraud G (1990) A lysimeter study of the effects of a ryegrass catch crop, during a winter wheat/maize rotation, on nitrate leaching and on the following crop. J Soil Sci 41:5–16. doi: 10.1111/j.1365-2389.1990.tb00040.x CrossRefGoogle Scholar
  47. Martinez-Feria RA, Dietzel R, Liebman M, Helmers MJ, Archontoulis SV (2016) Rye cover crop effects on maize: A system-level analysis. Field Crops Res 196:145–159. doi: 10.1016/j.fcr.2016.06.016 CrossRefGoogle Scholar
  48. Mitchell DC, Castellano MJ, Sawyer JE, Pantoja J (2013) Cover crop effects on nitrous oxide emissions: Role of mineralizable carbon. Soil Sci Soc Am J 77:1765–1773. doi: 10.2136/sssaj2013.02.0074 CrossRefGoogle Scholar
  49. Möller K, Schulz R, Müller T (2011) Effects of setup of centralized biogas plants on crop acreage and balances of nutrient and soil humus. Nutr Cycl Agroecosyst 89:303–312. doi: 10.1007/s10705-010-9395-z CrossRefGoogle Scholar
  50. Mosier AR, Hutchinson GL (1981) Nitrous oxide emissions from cropped fields. J Environ Qual 10:169–173. doi: 10.2134/jeq1981.00472425001000020009x CrossRefGoogle Scholar
  51. Nannen DU, Herrmann A, Loges R, Dittert K, Taube F (2011) Recovery of mineral fertiliser N in continuous silage maize using the 15N and difference methods. Nutr Cycl Agroecosyst 89:269–280. doi: 10.1007/s10705-010-9392-2 CrossRefGoogle Scholar
  52. Pantoja JL, Woli KP, Sawyer JE, Barker DW (2015) Corn nitrogen fertilization requirement and corn-soybean productivity with a rye cover crop. Soil Sci Soc Am J 79:1482–1495. doi: 10.2136/sssaj2015.02.0084 CrossRefGoogle Scholar
  53. Pantoja JL, Woli KP, Sawyer JE, Barker DW (2016) Winter rye cover crop biomass production, degradation, and nitrogen recycling. Agron J 108:541–853. doi: 10.2134/agronj2015.0336 CrossRefGoogle Scholar
  54. Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soil. Biogeochemistry 48:147–163. doi: 10.1023/A:1006271331703 CrossRefGoogle Scholar
  55. Petersen SO, Mutegi JK, Hansen EM, Munkholm L (2011) Tillage effects on N2O emissions as influenced by a winter cover crop. Soil Biol Biochem 43:1509–1517. doi: 10.1016/j.soilbio.2011.03.028 CrossRefGoogle Scholar
  56. Peyrat J, Baumont R, LeMorvan A, Nozière P (2015) Effect of maturity and hybrid on ruminal and intestinal digestion of corn silage in dry cows. J Dairy Sci 99:258–268. doi: 10.3168/jds.2015-9466 CrossRefPubMedGoogle Scholar
  57. Pimentel LG, Weiler DA, Pedroso GM, Bayer C (2015) Soil N2O emissions following cover-crop residues application under two soil moisture conditions. J Plant Nutr Soil Sci 178:631–640. doi: 10.1002/jpln.201400392 CrossRefGoogle Scholar
  58. Pinheiro J, Bates D, DebRoy S, Sarkar D (2015) {nlme}: Linear and nonlinear mixed effects models. http://cran.r-project.org/package=nlme
  59. Plénet D, Lemaire G (2000) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 216:65–82. doi: 10.1023/A:1004783431055 CrossRefGoogle Scholar
  60. Poyda A, Reinsch T, Kluß C, Taube F (2016) Greenhouse gas emissions from fen soils used for forage production in northern Germany. Biogeosciences 13:5221–5244. doi: 10.5194/bg-13-5221-2016 CrossRefGoogle Scholar
  61. Radicetti E, Mancinelli R, Moscetti R, Campiglia E (2016) Management of winter cover crop residues under different tillage conditions affects nitrogen utilization efficiency and yield of eggplant (Solanum melanogena L.) in Mediterranean environment. Soil Tillage Res 155:329–338. doi: 10.1016/j.still.2015.09.004 CrossRefGoogle Scholar
  62. Ranells NN, Wagger MG (1997) Nitrogen-15 recovery and release by rye and crimson clover cover crops. Soil Sci Soc Am J 61:943–948. doi: 10.2136/sssaj1997.03615995006100030033x CrossRefGoogle Scholar
  63. Robertson GP, Vitoussek PM (2009) Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 34:97–125. doi: 10.1146/annurev.environ.032108.105046 CrossRefGoogle Scholar
  64. Rosecrance RC, McCarty GW, Shelton DR, Teasdale JR (2000) Denitrification and N mineralization from hairy vetch (Vicia villosa Roth) and rye (Secale cereale L.) cover crop monocultures and bicultures. Plant Soil 227:283–290. doi: 10.1023/A:1026582012290 CrossRefGoogle Scholar
  65. Sanz-Cobena A, García-Marco S, Quemada M, Gabriel JL, Almendros P, Vallejo A (2014) Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Sci Total Environ 466–467:164–174. doi: 10.1016/j.scitotenv.2013.07.023 CrossRefPubMedGoogle Scholar
  66. Sarkodie-Addo J, Lee HC, Baggs EM (2003) Nitrous oxide emissions after application of inorganic fertilized and incorporation of green manure residues. Soil Use Manag 19:331–339. doi: 10.1079/SUM2003331 CrossRefGoogle Scholar
  67. Schaarschmidt F, Vaas L (2009) Analysis of trials with complex treatment structure using multiple contrast tests. Hortscience 44:188–195. http://hortsci.ashspublications.org/content/44/1/188.full
  68. Schipanski ME, Barbercheck M, Douglas MR, Finney DM, Haider K, Kaye JP, Kemanian AR, Mortensen DA, Ryan MR, Tooker J, White C (2014a) A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric Syst 125:12–22. doi: 10.1016/j.agsy.2013.11.004 CrossRefGoogle Scholar
  69. Schipanski ME, Smith RG, Pisani Gareau TL, Jabbour R, Lewis DB, Barbercheck ME, Mortensen DA, Kaye JP (2014b) Multivariate relationships influencing crop yields during the transition to organic management. Agric Ecosyst Environ 189:119–126. doi: 10.1016/j.agee.2014.03.037 CrossRefGoogle Scholar
  70. Schröder JJ, Van Dijk W, De Groot WJM (1996) Effects of cover crops on the nitrogen fluxes in a silage maize production system. Neth J Agric Sci 44:293–315. http://edepot.wur.nl/29641
  71. Schröder JJ, De Visser W, Assinck FBT, Velthof GL (2013) Effects of short-term nitrogen supply from livestock manures and cover crops on silage maize production and nitrate leaching. Soil Use Manag 29:151–160. doi: 10.1111/sum.12027 CrossRefGoogle Scholar
  72. Senbayram M, Chen R, Wienforth B, Herrmann A, Kage H, Mühling KH, Dittert K (2014) Emission of N2O from biogas crop production systems in northern Germany. Bioenergy Res 7:1223–1236. doi: 10.1007/s12155-014-9456-2 CrossRefGoogle Scholar
  73. Sieling K, Herrmann A, Wienforth B, Taube F, Ohl S, Hartung E, Kage (2013) Biogas cropping systems: short term response of yield performance and N use efficiency to biogas residue application. Eur J Agron 47:44–54. doi: 10.1016/j.eja.2013.01.002 CrossRefGoogle Scholar
  74. SRU—Sachverständigenrat für Umweltfragen (2015) Stickstoff: Lösungsstrategien für ein drängendes Umweltproblem. Sondergutachten vom Sachverständigenrat für Umweltfragen, pp 1–560. NITROGEN: Strategies for resolving an urgent environmental problem. http://www.umweltrat.de/SharedDocs/Downloads/EN/02_Special_Reports/2012_2016/2015_01_Nitrogen_Strategies_summary.html
  75. Svoboda N, Taube F, Wienforth B, Kluß C, Kage H, Herrmann A (2013) Nitrogen leaching losses after biogas residue application to silage maize. Soil Tillage Res 130:69–80. doi: 10.1016/j.still.2013.02.006 CrossRefGoogle Scholar
  76. Thorup-Kristensen K (1993) The effect of nitrogen catch crops on the nitrogen nutrition of a succeeding crop. I. Effects through mineralization and pre-emptive competition. Acta Agric Scand 43:74–81. doi: 10.1080/09064719309411222 Google Scholar
  77. Thorup-Kristensen K, DresbØll DB (2010) Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use Manag 26:27–35CrossRefGoogle Scholar
  78. Tonitto C, David MB, Drinkwater LE (2006) Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta analysis of crop yield and N dynamics. Agric Ecosyst Environ 112:58–72. doi: 10.1016/j.agee.2005.07.003 CrossRefGoogle Scholar
  79. Van Groenigen JW, Kasper GJ, Velthof GL, Van den Pol-van Dasselaar A, Kuikman PJ (2004) Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant Soil 263:101–111. doi: 10.1023/B:PLSO.0000047729.43185.46 CrossRefGoogle Scholar
  80. White CM, Finney DM, Kemanian AM, Kaye JP (2016) A model-data fusion approach for predicting cover crop nitrogen supply to corn. Agron J 108:2527–2540. doi: 10.2134/agronj2016.05.0288 CrossRefGoogle Scholar
  81. Zom RLG, Bannink A, Goselink RMA (2012) Effect of increased maturity of silage maize at harvest on conservation, dairy cow performance and methane emission. Livestock Research Wageningen, Report 578, 1–16. http://edepot.wur.nl/222839

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Martin Komainda
    • 1
    Email author
  • Friedhelm Taube
    • 1
  • Christof Kluß
    • 1
  • Antje Herrmann
    • 1
  1. 1.Institute of Crop Science and Plant Breeding, Grass and Forage Science/Organic AgricultureKiel UniversityKielGermany

Personalised recommendations