Nutrient Cycling in Agroecosystems

, Volume 104, Issue 3, pp 393–412 | Cite as

Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security

  • Helen Rowe
  • Paul J. A. Withers
  • Peter Baas
  • Neng Iong Chan
  • Donnacha Doody
  • Jeff Holiman
  • Brent Jacobs
  • Haigang Li
  • Graham K. MacDonald
  • Richard McDowell
  • Andrew N. Sharpley
  • Jianbo Shen
  • Wendy Taheri
  • Matthew Wallenstein
  • Michael N. Weintraub
Perspective

Abstract

Legacy phosphorus (P) that has accumulated in soils from past inputs of fertilizers and manures is a large secondary global source of P that could substitute manufactured fertilizers, help preserve critical reserves of finite phosphate rock to ensure future food and bioenergy supply, and gradually improve water quality. We explore the issues and management options to better utilize legacy soil P and conclude that it represents a valuable and largely accessible P resource. The future value and period over which legacy soil P can be accessed depends on the amount present and its distribution, its availability to crops and rates of drawdown determined by the cropping system. Full exploitation of legacy P requires a transition to a more holistic system approach to nutrient management based on technological advances in precision farming, plant breeding and microbial engineering together with a greater reliance on recovered and recycled P. We propose the term ‘agro-engineering’ to encompass this integrated approach. Smaller targeted applications of fertilizer P may still be needed to optimize crop yields where legacy soil P cannot fully meet crop demands. Farm profitability margins, the need to recycle animal manures and the extent of local eutrophication problems will dictate when, where and how quickly legacy P is best exploited. Based on our analysis, we outline the stages and drivers in a transition to the full utilization of legacy soil P as part of more sustainable regional and global nutrient management.

Keywords

Legacy phosphorus Sustainable nutrient management Crop production Phosphate rock P use efficiency P recycling Eutrophication 

Notes

Acknowledgments

This paper was initiated and refined at the Phosphorus Sustainability Research Coordination Network (P RCN) meetings in Tempe, Arizona in January 2014 and Washington DC in May 2015. We thank the U.S. National Science Foundation (CHE-1230603) for funding that workshop and to the UK Science & Innovation Network of the British Consulate-General for providing additional travel support. We also thank Dr. Tom Bruulsema, International Plant Nutrition Institute and two anonymous referees for their useful comments.

References

  1. Agbenin JO, Goladi JT (1998) Dynamics of phosphorus fractions in a savanna Alfisol under continuous cultivation. Soil Use Manag 14:59–64CrossRefGoogle Scholar
  2. Alvarez-Cobelas M, Sánchez-Carrillo S, Angeler DG, Sánchez-Andrés R (2009) Phosphorus export from catchments: a global view. J N Am Benthol Soc 28:805820Google Scholar
  3. Araújo A, Plassard C, Drevon J (2008) Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant Soil 312:129–138. doi: 10.1007/s11104-008-9595-3 CrossRefGoogle Scholar
  4. Ashby JA (1987) The effects of different types of farmer participation on the management of on-farm trials. Agric Admin Ext 25(4):235–252Google Scholar
  5. Atwell RC, Schulte LA, Westphal LM (2009) Linking resilience theory and diffusion of innovations theory to understand the potential for perennials in the US Corn Belt. Ecol Soc 14(1):30Google Scholar
  6. Bai Z, Li L, Yang X, Zhou B, Shi X, Wang B et al (2013) The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 372:27–37CrossRefGoogle Scholar
  7. Banik S, Dey B (1983) Phosphate-solubilizing potentiality of the microorganisms capable of utilizing aluminium phosphate as a sole phosphate source. Zentralblatt fuer Mikrobiologie 138:17–23Google Scholar
  8. Barrow NJ, Debnath A (2014) Effect of phosphate status on the sorption and desorption properties of some soils of northern India. Plant Soil 378:383–395CrossRefGoogle Scholar
  9. Beauchemin S, Hesterberg D, Chou J, Beauchemin M, Simard RR, Sayers DE (2003) Speciation of phosphorus in phosphorus-enriched agricultural soils using X-ray absorption near-edge structure spectroscopy and chemical fractionation. J Environ Qual 32:1809–1819PubMedCrossRefGoogle Scholar
  10. Beegle D (2005) Assessing soil phosphorus fro crop production by soil testing. In: Sims JT, Sharpley AN (eds) Phosphorus: agriculture and the environment, agronomy monograph 46. American Society of Agronomy, Wisconsin, pp 123–143Google Scholar
  11. Bender RS, Haegele JW, Ruffo ML, Below FE (2013) Nutrient uptake, partitioning and remobilization in modern, transgenic, insect-protected maize hybrids. Agronomy 105(1):161–170CrossRefGoogle Scholar
  12. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. Bioscience 51:227–234CrossRefGoogle Scholar
  13. Blake L, Johnston AE, Poulton PR, Goulding KWT (2003) Changes in soil phosphorus fractions following positive and negative phosphorus balances for long periods. Plant Soil 254:245–261CrossRefGoogle Scholar
  14. Brown P, Nelson R, Jacobs B, Kokic P, Tracey J, Ahmed M, DeVoil P (2010) Enabling natural resource managers to self-assess their adaptive capacity. Agric Syst 103:562–568CrossRefGoogle Scholar
  15. Buda AR, Koopmans GF, Bryant RB, Chardon WJ (2012) Emerging technologies for removing nonpoint phosphorus from surface water and groundwater: introduction. J Environ Qual 41:621–627PubMedCrossRefGoogle Scholar
  16. Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102(9):1003–1005Google Scholar
  17. Chowdhury RB, Moore GA, Weatherley AJ, Arora M (2014) A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales. Resour Conserv Recycl 83:213–228CrossRefGoogle Scholar
  18. Coad J, Burkett L, Dougherty W, Sparrow L (2014) Decrease in phosphorus concentrations when P fertilizer application is reduced or omitted from grazed pasture soils. Soil Research 52:282–292CrossRefGoogle Scholar
  19. Condron LM, Goh KM (1989) Effects of long-term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand. J Soil Sci 40:383–395CrossRefGoogle Scholar
  20. Daram P, Brunner S, Persson BL, Amrhein N, Bucher M (1998) Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 1:225–233CrossRefGoogle Scholar
  21. de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlun L et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci USA 110(35):14296–14301PubMedPubMedCentralCrossRefGoogle Scholar
  22. DEFRA (2010) The fertiliser manual (RB209), 8th edn. The Stationary Office, Department for Environment Food and Rural Affairs, LondonGoogle Scholar
  23. Delgado A, Torrent J (1997) Phosphate-rich soils in the European Union: estimating total plant-available phosphorus. Eur J Agron 6(3–4):205–214CrossRefGoogle Scholar
  24. Delmas M, Saby N, Arrouays D, Dupas R, Lemercier B, Pellerin S, Gascuel-Odoux C (2015) Explaining and mapping total phosphorus content in French topsoils. Soil Use Manag 31(2):259–269CrossRefGoogle Scholar
  25. Delorme TA, Angle JS, Coale FJ, Chaney RL (2000) Phytoremediation of phosphorus-enriched soils. Int J Phytorem 2(2):173–181CrossRefGoogle Scholar
  26. DeLuca T, Glanville HC, Harris M, Emmett BA, Pingree MRA, de Sosa LL, Morenà C, Jones DL (2015) A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biol Biogeochem 88:110–119CrossRefGoogle Scholar
  27. Dodd MB, Ledgard SF (1999) Long term effects of withholding superphosphate application to North Island hill country: a 10-year update. Proc N Z Grassl Assoc 61:63–68Google Scholar
  28. Dodd JR, Mallarino AP (2005) Soil-test phosphorus and crop grain yield responses to long-term phosphorus fertilization for corn-soybean rotations. Soil Sci Soc Am J 69:1118–1128CrossRefGoogle Scholar
  29. Dodd RJ, McDowell RW, Condron LM (2012) Predicting the changes in environmentally and agronomically significant phosphorus forms following the cessation of phosphorus fertilizer applications to grassland. Soil Use Manag 28:135–147CrossRefGoogle Scholar
  30. Dodd RJ, McDowell RW, Condron LM (2014) Manipulation of fertilizer regimes in phosphorus enriched soils can reduce phosphorus loss to leachate through an increase in pasture and microbial biomass production. Agric Ecosyst Environ 185:65–76CrossRefGoogle Scholar
  31. Ehlert P, Morel C, Fotyma M, Destain J (2003) Potential role of phosphate buffering capacity of soils in fertilizer management strategies fitted to environmental goals. J Plant Nutr Soil Sci 166:409–415CrossRefGoogle Scholar
  32. Elser J, Bennett E (2011) Phosphorus: a broken biogeochemical cycle. Nature 478:29–31PubMedCrossRefGoogle Scholar
  33. Elser JJ, Elser TJ, Carpenter SR, Brock WA (2014) Regime shift in fertilizer commodities indicates more turbulence ahead for food security. PLoS ONE 9:e93998. doi: 10.1371/journal.pone.0093998 PubMedPubMedCentralCrossRefGoogle Scholar
  34. FAOSTAT (2015) Inputs/Fertilizer statistics. http://faostat3.fao.org/browse/R/RF/E
  35. Frossard E, Condron LM, Oberson A, Sinaj S, Fardeau JC (2000) Processes governing phosphorus availability in temperate soils. J Environ Qual 29:15–23CrossRefGoogle Scholar
  36. Gahoonia TS, Nielsen NE (2004) Root traits as tools for creating phosphorus efficient crop varieties. Plant Soil 260:47–57CrossRefGoogle Scholar
  37. Gahoonia TS, Claassen N, Jungk A (1992) Mobilization of phosphate on different soils by ryegrass supplied with ammonium or nitrate. Plant Soil 140:241–248CrossRefGoogle Scholar
  38. Gallet A, Flisch R, Ryser JP, Frossard E, Sinaj S (2003a) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:568–578CrossRefGoogle Scholar
  39. Gallet A, Flisch R, Ryser JP, Nosberger J, Frossard E, Sinaj S (2003b) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:557–567CrossRefGoogle Scholar
  40. Gamuyao R, Chin JH, Pariasca-Tanaka J, Pesaresi P, Catausan S, Dalid C, Slamet-Loedin I, Tecson-Mendoza EM, Wissuwa M, Heuer S (2012) The protein kinase Pstol1 from traditional rice confers tolerance of phosphorus deficiency. Nature 488(7412):535–541PubMedCrossRefGoogle Scholar
  41. Gaxiola R, Edwards M, Elser JJ (2011) A transgenic approach to enhance phosphorus use efficiency in crops as part of a comprehensive strategy for sustainable agriculture. Chemosphere 84:840–845PubMedCrossRefGoogle Scholar
  42. Gomiero T, Pimental D, Paoletti MG (2011) Is there a need for a more sustainable agriculture? Crit Rev Plant Sci 30(1–2):6–23CrossRefGoogle Scholar
  43. Grandt S, Ketterings QM, Lembo AJ, Vermeylen F (2010) In-field variability of soil test phosphorus and implications for agronomic and environmental phosphorus management. Soil Sci Soc Am J 74(5):1800–1807CrossRefGoogle Scholar
  44. Gransee A, Merbach W (2000) Phosphorus dynamics in a long-term P fertilization trial on Luvic Phaeozem at Halle. J Plant Nutr Soil Sci 163:353–357CrossRefGoogle Scholar
  45. Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC (2001) The importance of early season phosphorus nutrition. Can J Plant Sci 81:211–214CrossRefGoogle Scholar
  46. Guo C, Guo L, Li X, Gu J, Zhao M, Duan W, Ma C, Lu W, Xiao K (2014) TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiol Plant 36(6):1373–1384. doi: 10.1007/s11738-014-1516-x CrossRefGoogle Scholar
  47. Hanserud OS, Brod E, Øgaard AF, Müller DB, Brattebø H (2015) A multi-regional soil phosphorus balance for exploring secondary fertilizer potential: the case of Norway. Nutr Cycl Agroecosyst. doi: 10.1007/s10705-015-9721-6
  48. Hao LF, Zhang JL, Chen FJ, Christie P, Li XL (2008) Response of two maize inbred lines with contrasting phosphorus efficiency and root morphology to mycorrhizal colonization at different soil phosphorus supply levels. J Plant Nutr 31:1059–1073. doi: 10.1080/01904160802115227 CrossRefGoogle Scholar
  49. Hayes J, Richardson A, Simpson R (2000) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286CrossRefGoogle Scholar
  50. Herlihy M, McCarthy J, Breen J, Moles R (2004) Effects over time of fertiliser P and soil series on P balance, soil-test P and herbage production. Irish J Agric Food Res 43:147–160Google Scholar
  51. Herman DJ, Firestone MK, Nuccio E, Hodge A (2012) Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol Ecol 80(1):236–247PubMedCrossRefGoogle Scholar
  52. Hinsinger P, Betencourt E, Bernard L, Brauman A, Plassard C, Shen J, Tang X, Zhang F (2011) P for two, sharing a scarce resource: soil phosphorus acquisition in the rhizosphere of intercropped species. Plant Physiol 156:1078–1086PubMedPubMedCentralCrossRefGoogle Scholar
  53. Holford ICR (1980) Effects of phosphate buffer capacity on critical levels and relationships between soil tests and labile phosphate in wheat-growing areas. Aust J Soil Res 18:405–414CrossRefGoogle Scholar
  54. Jaakola A, Hartikainen H, Lemola R (1997) Effect of fertilization on soil phosphorus in a along-term field experiment in southern Finland Agriculture and Food. Science 6:313–322Google Scholar
  55. Jacobs BC, Brown PR (2014) Drivers of change in landholder capacity to manage natural resources. J Nat Resour Policy Res 6(1):1–26CrossRefGoogle Scholar
  56. Jarvie HP, Sharpley AN, Spears B, Buda AR, May L, Kleinman PJA (2013) Water quality remediation faces unprecedented challenges from legacy phosphorus. Environ Sci Technol 47:8997–8998PubMedCrossRefGoogle Scholar
  57. Jarvie HP, Sharpley AN, Flaten D, Kleinman PJA, Jenkins A, Simmons T (2015) The pivotal role of phosphorus in a resilient water–energy–food security nexus. J Environ Qual 44(4):1049–1062PubMedCrossRefGoogle Scholar
  58. Jing J, Zhang F, Rengel Z, Shen J (2012) Localized fertilization with P plus N elicits an ammonium-dependent enhancement of maize root growth and nutrient uptake. Field Crops Res 133:176–185CrossRefGoogle Scholar
  59. Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48(1):1–13PubMedCrossRefGoogle Scholar
  60. Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecol Appl 3:749–757CrossRefGoogle Scholar
  61. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  62. Johnston AE, Goulding KWT, Poulton PR, Chalmers AG (2001) Reducing fertilizer inputs: endangering arable soil fertility. In: Proceedings no. 487, International Fertilizer Society York UKGoogle Scholar
  63. Johnston AE, Poulton PR, Fixen PE, Curtin D (2014) Phosphorus: its efficient use in agriculture. Adv Agron 123:177–228CrossRefGoogle Scholar
  64. Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205:25–44CrossRefGoogle Scholar
  65. Jones D, Oburger E (2011) Solubilization of phosphorus by soil microorganisms. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action. Springer, Berlin, pp 169–198CrossRefGoogle Scholar
  66. Jordan-Meille L, Rubaek GH, Ehlert P, Genot V, Hofman G, Goulding K, Recknagel KJ, Provolo G, Barraclough P (2012) An overview of fertilizer-P recommendations in Europe: soil testing, calibration, and fertilizer recommendations. Soil Use Manag 28(4):419–435CrossRefGoogle Scholar
  67. Juang K-W, Liou D-C, Lee D-Y (2002) Site-specific phosphorus application based on the kriging fertilizer-phosphorus availability index of soils. J Environ Qual 31(4):1248–1255PubMedCrossRefGoogle Scholar
  68. Kamprath EJ (1999) Changes in phosphate availability of Ultisols with long-term cropping. Commun Soil Sci Plant Anal 30(7&8):909–919CrossRefGoogle Scholar
  69. Kautz T, Amelung W, Ewert F, Gaiser T, Horn R, Jahn R et al (2013) Nutrient acquisition from arable subsoils in temperate climates: a review. Soil Biol Biochem 57:1003–1022CrossRefGoogle Scholar
  70. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron Sustain Dev 27:29–43CrossRefGoogle Scholar
  71. Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58Google Scholar
  72. Kleinman PJA, Sharpley AN, Withers PJA, Bergstrom L, Johnson LT, Doody DG (2015) Implementing agricultural phosphorus science and management to combat eutrophication. Ambio 44(Suppl 2):S297–S310PubMedCrossRefGoogle Scholar
  73. Lambers H, Finnegan PM, Laliberté E, Pearse SJ, Ryan MH, Shane MW, Veneklaas EJ (2011) Update on phosphorus nutrition in Proteaceae. Phosphorus nutrition of Proteaceae in severely phosphorus-impoverished soils: are there lessons to be learned for future crops? Plant Physiol 156(3):1058–1066PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lambers H, Cawthray GR, Giavalisco P, Kuo J, Laliberte E, Pearse SJ, Scheible W, Stitt M, Teste F, Turner BL (2012) Proteaceae from severely phosphorus-impoverished soils extensively replace phospholipids with galactolipids and sulfolipids during leaf development to achieve a high photosynthetic phosphorus-use-efficiency. New Phytol. doi: 10.1111/j.1469-8137.2012.04285.x Google Scholar
  75. Lederer J, Laner D, Fellner J (2014) A framework for the evaluation of anthropogenic resources: the case study of phosphorus stocks in Austria. J Clean Prod 84:368–381CrossRefGoogle Scholar
  76. Li L, Li S, Sun J, Zhou L, Bao X, Zhang H, Zhang F (2007) Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Natl Acad Sci USA 104:11192–11196PubMedPubMedCentralCrossRefGoogle Scholar
  77. Li H, Shen JB, Zhang FS, Tang CX, Hans L (2008) Is there a critical level of shoot phosphorus concentration for cluster-root formation in Lupinus albus? Funct Plant Biol 35:328–336CrossRefGoogle Scholar
  78. Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Shen J, Chen X, Jiang R, Zhang F (2011) Integrated soil and plant phosphorus management for crop and environment in China: a review. Plant Soil 349:157–167CrossRefGoogle Scholar
  79. Liang C, Wang J, Zhao J, Tian J, Liao H (2014) Control of phosphate homeostasis through gene regulation in crops. Curr Opin Plant Biol 21C:59–66CrossRefGoogle Scholar
  80. Liu H, Trieu AT, Blaylock LA, Harrison MJ (1998) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact 11(1):14–22PubMedCrossRefGoogle Scholar
  81. Lynch JP (2007) Roots and the second green revolution. Aust J Bot 55:493–512CrossRefGoogle Scholar
  82. MacDonald GK, Bennett EM (2009) Phosphorus accumulation in Saint Lawrence river watershed soils: a century-long perspective. Ecosystems 12:621–635CrossRefGoogle Scholar
  83. MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world’s croplands. Proc Natl Acad Sci USA 108:3086–3091PubMedPubMedCentralCrossRefGoogle Scholar
  84. MacDonald GK, Bennett EM, Taranu ZE (2012) The influence of time, soil characteristics, and land-use history on soil phosphorus legacies: a global meta-analysis. Glob Change Biol 18:1904–1917CrossRefGoogle Scholar
  85. Maguire RO, Chardon WJ, Simard RR (2005) Assessing potential environmental impacts of soil phosphorus by soil testing. In: Sharpley AN, Sims AT (eds) Phosphorus: agriculture and the environment. Agriculture and the Environment, American Society of Agronomy, Madison, pp 145–180Google Scholar
  86. Malboobi MA, Owlia P, Behbahani M, Sarokhani E, Moradi S, Yakhchali B, Deljou A, Heravi KM (2009) Solubilization of organic and inorganic phosphates by three highly efficient soil bacterial isolates. World J Microbiol Biotechnol 25:1471–1477CrossRefGoogle Scholar
  87. Manschadi AM, Kaul H-P, Vollmann J, Eitzinger J, Wenzel W (2014) Developing phosphorus-efficient crop varieties—an interdisciplinary research framework. Field Crops Res 162:87–98CrossRefGoogle Scholar
  88. Massey MS, Davis JG, Ippolito JA, Sheffield RE (2009) Effectiveness of recovered magnesium phosphates as fertilizers in neutral and slightly alkaline soils. Agron J 101(2):323–329CrossRefGoogle Scholar
  89. McBride SD, Nguyen ML, Rickard DS (1990) Implications of ceasing annual superphosphate topdressing applications on pasture production. Proc N Z Grassl Assoc 59:177–180Google Scholar
  90. McCollum RE (1991) Buildup and decline in soil phosphorus: 30-year trends on Typic Umprabuult. Agron J 83:77–85CrossRefGoogle Scholar
  91. McCormick S, Jordan C, Bailey JS (2009) Within and between-field spatial variation in soil phosphorus in permanent grassland. Precis Agric 10:262–276CrossRefGoogle Scholar
  92. McDowell RW, Condron LM (2012) Phosphorus and the Winchmore trials: review and lessons learnt. N Z J Agric Res 55:119–132CrossRefGoogle Scholar
  93. McDowell RW, Condron LM, Stewart I, Cave V (2005) Chemical nature and diversity of phosphorus in New Zealand pasture soils using 31P nuclear magnetic resonance spectroscopy and sequential fractionation. Nutr Cycl Agroecosyst 72:241–254CrossRefGoogle Scholar
  94. McDowell RW, Cosgrove G, Orchiston T, Chrystal J (2014) A cost-effective management practice to decrease phosphorus loss from dairy farms. J Environ Qual 43(6):2044–2052PubMedCrossRefGoogle Scholar
  95. McDowell RW, Cox N, Daughney CJ, Wheeler D, Moreau M (2015) A national assessment of the potential linkage between soil, and surface and groundwater concentrations of phosphorus. J Am Water Resour Assoc 51(4):992–1002CrossRefGoogle Scholar
  96. McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2012) The chemical nature of P accumulation in agricultural soils—implications for fertilizer management and design: an Australian perspective. Plant Soil 349:69–87CrossRefGoogle Scholar
  97. Metson GS, MacDonald GK, Haberman D, Nesme T, Bennett EM (2015) Feeding the corn belt: opportunities for phosphorus recycling in U.S. agriculture. Sci Total Environ. doi: 10.1016/j.scitotenv.2015.08.047
  98. Miras-Avalos JM, Antunes PM, Koch A, Khosla K, Klironomos JN, Dunfield KE (2011) The influence of tillage on the structure of rhizosphere and root-associated arbuscular mycorrhizal fungal communities. Pedobiologia 54:235–241. doi: 10.1016/j.pedobi.2011.03.005 CrossRefGoogle Scholar
  99. Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D (1997) Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc Natl Acad Sci USA 94(13):7098–7102PubMedPubMedCentralCrossRefGoogle Scholar
  100. Negassa W, Leinweber P (2009) How does the Hedley sequential phosphorus fractionation reflect impacts of land use and management on soil phosphorus: a review. J Plant Nutr Soil Sci 172:305–325CrossRefGoogle Scholar
  101. Novak JM, Chan ASK (2002) Development of P-hyperaccumulator plant strategies to remediate soils with excess P concentrations. Crit Rev Plant Sci 21:493–509CrossRefGoogle Scholar
  102. Nziguheba G, Zingore S, Kihara J, Merckx R, Njoroge S, Otinga A, Vandamme E, Vanlauwe B (2015) Phosphorus in smallholder farming systems of sub-Sahara Africa: implications for agricultural intensification. Nutr Cycl Agroecosyst. doi: 10.1007/s10705-015-9729-y
  103. Owen D, Williams AP, Griffith GW, Withers PJA (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl Soil Ecol 86:41–54CrossRefGoogle Scholar
  104. Pannell D (2011) Policy perspectives on changing land management. In: Pannell D, Vanclay F (eds) Changing land management: adoption of new practices by rural landholders. CSIRO, Collingwood, pp 177–188Google Scholar
  105. Paris P, Gavazzi C, Tabaglio V (2004) Rate of soil P decline due to crop uptake long-term curves of depletion. Agric Med 134:236–245Google Scholar
  106. Penn C, McGrath J, Bowen J, Wilson S (2014) Phosphorus removal structures: a management option for legacy phosphorus. J Soil Water Conserv 69(2):51A–56ACrossRefGoogle Scholar
  107. Postma J, Lynch JP (2010) Theoretical evidence for the functional benefit of root cortical aerenchyma in soils with low phosphorus availability. Ann Bot 107:829–841PubMedPubMedCentralCrossRefGoogle Scholar
  108. Pretty J, Brett C, Gee D, Hine R, Mason C, Morison J, Rayment M, Van Der Bijl G, Dobbs T (2001) Policy challenges and priorities for internalizing the externalities of modern agriculture. J Environ Plan Manag 44(2):263–283CrossRefGoogle Scholar
  109. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeoscience 7:585–619CrossRefGoogle Scholar
  110. Raboy V (2009) Approaches and challenges to engineering seed phytate and total phosphorus. Plant Sci 177:281–296CrossRefGoogle Scholar
  111. Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224CrossRefGoogle Scholar
  112. Read DWL, Spratt ED, Bailey LD, Warder FG (1977) Residual effects of phosphorus fertilizer I For wheat grown on four Chernozemic soil types of Saskatchewan and Manitoba. Can J Soil Sci 57:255–262CrossRefGoogle Scholar
  113. Rehm GW, Randall GW, Scobbie AJ, Vetch JA (1995) Impact of fertilizer placement and tillage system on phosphorus distribution. Soil Sci Soc Am J 59:1661–1665CrossRefGoogle Scholar
  114. Reynolds M (2006) Critical appraisal in environmental decision making. The Open University, MiltonGoogle Scholar
  115. Richardson A, Barea J-M, McNeill A, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339. doi: 10.1007/s11104-009-9895-2 CrossRefGoogle Scholar
  116. Ringeval B, Nowak B, Nesme T, Delmas M, Pellerin S (2014) Contribution of anthropogenic phosphorus to agricultural soil fertility and food production. Glob Biogeochem Cycles 28:743–756CrossRefGoogle Scholar
  117. Rodrigues M, Pavinato PS, Withers PJA, Bettoni Teles AP, Herrera WFB (2015) Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Sci Total Environ (in press)Google Scholar
  118. Rodriguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  119. Rose TJ, Liu L, Wissuwa M (2013) Improving phosphorus efficiency in cereal crops: is breeding for reduced grain phosphorus concentration part of the solution? Front Plant Sci 4:444. doi: 10.3389/fpls.2013.00444 PubMedPubMedCentralCrossRefGoogle Scholar
  120. Rowe HI, Brown CS, Claassen VP (2007) Comparisons of mycorrhizal responsiveness with field soil and commercial inoculum for six native montane species and Bromus tectorum. Restor Ecol 15:44–52CrossRefGoogle Scholar
  121. Roy-Bolduc A, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopestic 2:1–5Google Scholar
  122. Rubaek GH, Kristensen K, Olesen SE, Østergaard HS, Heckrath G (2013) Phosphorus accumulation and spatial distribution in agricultural soils in Denmark. Geoderma 209–210:241–250CrossRefGoogle Scholar
  123. Sánchez-Alcalá I, del Campillo MC, Barrón V, Torrent J (2014) The Olsen P/solution P relationship as affected by soil properties. Soil Use Manag 30(4):454–462CrossRefGoogle Scholar
  124. Sattari S, Bouwman A, Giller KE, Van Ittersum M (2012) Residual soil phosphorus as the missing piece in the global phosphorus crisis puzzle. Proc Natl Acad Sci USA 109:6348–6353PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sattari SZ, van Ittersum MK, Giller KE, Zhang F, Bouwman AF (2014) Key role of China and its agriculture in global sustainable phosphorus management. Environ Res Lett 9:054003CrossRefGoogle Scholar
  126. Schulte RPO, Melland AR, Fenton O, Herlihyn M, Richards K, Jordan P (2010) Modelling soil phosphorus decline: expectations of water framework directives policies. Environ Sci Policy 13:472–484CrossRefGoogle Scholar
  127. Selles F, Campbell CA, Zentner RP, Curtin D, James DC, Basnyat P (2011) Phosphorus use efficiency and long-term trends in soil available phosphorus in wheat production systems with and without nitrogen fertilizer. Can J Soil Sci 91:39–52CrossRefGoogle Scholar
  128. Sharma NC, Starnes DL, Sahi SV (2009) Phytoextraction of excess soil phosphorus. Environ Pollut 146(1):120–127CrossRefGoogle Scholar
  129. Sharpley AN (2003) Plowing to decrease surface stratification of phosphorus in manured soils. J Environ Qual 32:1375–1384PubMedCrossRefGoogle Scholar
  130. Sharpley AN, McDowell RW, Kleinman PJA (2004) Amounts, forms and solubility of phosphorus in soils receiving manure. Soil Sci Soc Am J 68:2048–2057CrossRefGoogle Scholar
  131. Sharpley AN, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus legacy: overcoming the effects of past management practices to mitigate future water quality impairment. J Environ Qual 42:1308–1326PubMedCrossRefGoogle Scholar
  132. Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005PubMedPubMedCentralCrossRefGoogle Scholar
  133. Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2013) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64:1181–1192PubMedCrossRefGoogle Scholar
  134. Simpson RJ, Oberson A, Culvenor RA, Ryan MH, Veneklaas EJ, Lambers H, Lynch JP, Ryan PR, Delhaize E, Smith FA (2011) Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 349:1–32CrossRefGoogle Scholar
  135. Smith VH, Schindler DW (2009) Eutrophication science: Where do we go from here? Trends Ecol Evol 24:201–207PubMedCrossRefGoogle Scholar
  136. Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057PubMedPubMedCentralCrossRefGoogle Scholar
  137. Smith DR, Francesconi W, Livingston SJ, Huang C (2014) Phosphorus losses from monitored fields with conservation practices in the Lake Erie Basin, USA. Ambio 44(Suppl):S319–S331Google Scholar
  138. Staver KW, Brinsfield RB (2001) Agriculture and water quality on the Maryland, Eastern Shore: Where do we go from here? Bioscience 51(10):859–868CrossRefGoogle Scholar
  139. Stout WL, Sharpley AN, Landa J (2000) Effectiveness of coal combustion by-products in controlling phosphorus export from soils. J Environ Qual 29:1239–1244CrossRefGoogle Scholar
  140. Sulpice R, Ishihara H, Schlereth A, Cawthray GR, Encke B, Giavalisco P et al (2014) Low levels of ribosomal RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. Plant, Cell Environ 37(6):1276–1298. doi: 10.1111/pce.12240 CrossRefGoogle Scholar
  141. Tiessen H, Stewart J, Cole C (1984) Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci Soc Am J 48:853–858CrossRefGoogle Scholar
  142. Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61(2):295–304PubMedCrossRefGoogle Scholar
  143. Tóth G, Guicharnaud R-A, Tóth B, Hermann T (2014) Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur J Agron 55:42–52CrossRefGoogle Scholar
  144. Unger PW, Kaspar TC (1993) Soil compaction and root growth: a review. Agron J 86(5):759–766CrossRefGoogle Scholar
  145. van der Salm C, Chardon WJ, Koopmans GF, van Middlekoop JC, Ehlert PAI (2009) Phytoextraction of phosphorus-enriched grassland soils. J Environ Qual 38:751–761PubMedCrossRefGoogle Scholar
  146. Veneklaas EJ, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW, White PJ, Raven JA (2012) Opportunities for improving phosphorus-use efficiency in crop plants. New Phytol 195(2):306–320. doi: 10.1111/j.1469-8137.2012.04190.x PubMedCrossRefGoogle Scholar
  147. Walker TW, Syers JK (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19CrossRefGoogle Scholar
  148. Wang X, Shen J, Liao H (2010) Acquisition or utilization, which is more critical for enhancing phosphorus efficiency in modern crops? Plant Sci 179:302–306CrossRefGoogle Scholar
  149. Watson CJ, Smith RV, Matthews DI (2007) Increase in phosphorus losses from grassland in response to Olsen-P accumulation. J Environ Qual 36:1452–1460PubMedCrossRefGoogle Scholar
  150. White PJ, Hammond JP (2008) Chapter 4: Phosphorus nutrition of terrestrial plants. In: White PJ, Hammond JP (eds) The ecophysiology of plant-phosphorus interactions. Springer, Berlin, pp 51–81CrossRefGoogle Scholar
  151. Withers PJA, Unwin RJ, Grylls JP, Kane R (1994) Effects of withholding phosphate and potash fertilizer on grain yield of cereals and on plant-available phosphorus and potassium in calcareous soils. Eur J Agron 3(1):1–8CrossRefGoogle Scholar
  152. Withers PJA, Edwards AC, Foy RH (2001) Phosphorus cycling in UK agriculture and implications for phosphorus loss from soil. Soil Use Manag 17:139–149CrossRefGoogle Scholar
  153. Withers PJA, Hartikainen H, Barberis E, Flynn NJ, Warren GP (2009) The effect of soil phosphorus on particulate phosphorus in land runoff. Eur J Soil Sci 60:994–1004CrossRefGoogle Scholar
  154. Withers PJA, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not the soil: rethinking phosphorus management in the food chain. Environ Sci Technol 48:6523–6530PubMedCrossRefGoogle Scholar
  155. Withers PJA, van Dijk KC, Neset T-SS, Nesme T, Oenema O, Rubæk GH, Schoumans OF, Smit B, Pellerin S (2015) Stewardship to tackle global phosphorus inefficiency: the case of Europe. Ambio 44(Suppl 2):S193–S206PubMedCrossRefGoogle Scholar
  156. Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16(2):205–212. doi: 10.1016/j.pbi.2013.03.002 PubMedCrossRefGoogle Scholar
  157. Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H + -pyrophosphatase. Plant Biotechnol J 5(6):735–745. doi: 10.1111/j.1467-7652.2007.00281.x PubMedCrossRefGoogle Scholar
  158. Yang H, Zhang X, Gaxiola RA, Xu G, Peer WA, Murphy AS (2014) Over-expression of the Arabidopsis proton-pyrophosphatase AVP1 enhances transplant survival, root mass, and fruit development under limiting phosphorus conditions. J Exp Bot 65(12):3045–3053. doi: 10.1093/jxb/eru149 PubMedPubMedCentralCrossRefGoogle Scholar
  159. Zhang F, Shen J, Zhang J, Zuo Y, Li L, Chen X (2010) Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: implications for China. Adv Agron 107:1–32CrossRefGoogle Scholar
  160. Zhang DS, Zhang CC, Tang XY, Li HG, Zhang FS, Rengel Z, Whalley WR, Davies WJ, Shen JB (2015) Increased soil P availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize. New Phytol. doi: 10.1111/nph.13613
  161. Zhu Y-G, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Helen Rowe
    • 1
  • Paul J. A. Withers
    • 2
  • Peter Baas
    • 3
  • Neng Iong Chan
    • 1
  • Donnacha Doody
    • 4
  • Jeff Holiman
    • 5
  • Brent Jacobs
    • 6
  • Haigang Li
    • 7
  • Graham K. MacDonald
    • 8
  • Richard McDowell
    • 9
  • Andrew N. Sharpley
    • 10
  • Jianbo Shen
    • 7
  • Wendy Taheri
    • 11
  • Matthew Wallenstein
    • 3
  • Michael N. Weintraub
    • 12
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.School of Environment, Natural Resources and GeographyBangor UniversityBangorUK
  3. 3.Department of Ecosystem Science and SustainabilityColorado State UniversityFort CollinsUSA
  4. 4.Agri-Food and Biosciences InstituteBelfastIreland
  5. 5.Public Hygiene Let’s Us Stay Human (PHLUSH)PortlandUSA
  6. 6.Institute for Sustainable FuturesUniversity of TechnologySydneyAustralia
  7. 7.Center for Resources, Environment and Food SecurityChina Agricultural UniversityBeijingPeople’s Republic of China
  8. 8.Department of GeographyMcGill UniversityMontrealCanada
  9. 9.AgResearchLincoln UniversityLincolnNew Zealand
  10. 10.Department of Crop, Soil and Environmental SciencesUniversity of ArkansasFayettevilleUSA
  11. 11.TerraNimbusPelhamUSA
  12. 12.Department of Environmental SciencesUniversity of ToledoToledoUSA

Personalised recommendations