Nutrient Cycling in Agroecosystems

, Volume 100, Issue 3, pp 315–332 | Cite as

Land management between crops affects soil inorganic nitrogen balance in a tropical rice system

  • Naomi S. Wells
  • Tim J. Clough
  • Sarah E. Johnson-Beebout
  • Roland J. Buresh
Original Article

Abstract

Sustainable production of lowland rice (Oryza sativa L.) requires minimising undesirable soil nitrogen (N) losses via nitrate (NO3) leaching and denitrification. However, information is limited on the N transformations that occur between rice crops (fallow and land preparation), which control indigenous N availability for the subsequent crop. In order to redress this knowledge gap, changes in NO3 isotopic composition (δ15N and δ18O) in soil and water were measured from harvest through fallow, land preparation, and crop establishment in a 7 year old field trial in the Philippines. During the period between rice crops, plots were maintained either, continuously flooded, dry, or alternately wet and dry from rainfall. Plots were split with addition or removal of residue from the previous rice crop. No N fertilizer was applied during the experimental period. Nitrogen accumulated during the fallow (20 kg NH4+–N ha−1 in flooded treatments and 10 kg NO3–N ha−1 in treatments with drying), but did not influence N availability for the subsequent crop. Nitrate isotope fractionation patterns indicated that denitrification drove this homogenisation: during land preparation ~50 % of inorganic N in the soil (top 10 cm) was denitrified, and by 2 weeks after transplanting this increased to >80 % of inorganic N, regardless of fallow management. The 17 days between fallow and crop establishment controlled not only N attenuation (3–7 kg NO3–N ha−1 denitrified), but also N inputs (3–14 kg NO3–N ha−1 from nitrification), meaning denitrification was dependent on soil nitrification rates. While crop residue incorporation delayed the timing of N attenuation, it ultimately did not impact indigenous N supply. By measuring NO3 isotopic composition over depth and time, this study provides unique in situ measurements of the pivotal role of land preparation in determining paddy soil indigenous N supply.

Keywords

Paddy soils Indigenous nitrogen supply Nitrate isotopes Denitrification Fallow management Rice 

Supplementary material

10705_2014_9644_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. Akiyama H, Yagi K, Yan XY (2005) Direct N2O emissions from rice paddy fields: summary of available data. Glob Biogeochem Cycle 19(1):10. doi:10.1029/2004gb002378 CrossRefGoogle Scholar
  2. Austin BJ, Strauss EA (2011) Nitrification and denitrification response to varying periods of desiccation and inundation in a western Kansas stream. Hydrobiologia 658(1):183–195. doi:10.1007/s10750-010-0462-x CrossRefGoogle Scholar
  3. Barnes RT, Raymond PA (2010) Land-use controls on sources and processing of nitrate in small watersheds: insights from dual isotopic analysis. Ecol Appl 20(7):1961–1978. doi:10.1890/08-1328.1 PubMedCrossRefGoogle Scholar
  4. Becker M, Asch F, Maskey SL, Pande KR, Shah SC, Shrestha S (2007) Effects of transition season management on soil N dynamics and system N balances in rice-wheat rotations of Nepal. Field Crop Res 103(2):98–108. doi:10.1016/j.fcr.2007.05.002 CrossRefGoogle Scholar
  5. Berger S, Jang I, Seo J, Kang H, Gebauer G (2013) A record of N2O and CH4 emissions and underlying soil processes of Korean rice paddies as affected by different water management practices. Biogeochem 115(1–3):317–332. doi:10.1007/s10533-013-9837-1 CrossRefGoogle Scholar
  6. Bierke A, Kaiser K, Guggenberger G (2008) Crop residue management effects on organic matter in paddy soils: the lignin component. Geoderma 146(1–2):48–57. doi:10.1016/j.geoderma.2008.05.004 CrossRefGoogle Scholar
  7. Bird JA, Horwath WR, Eagle AJ, van Kessel C (2001) Immobilization of fertilizer nitrogen in rice: effects of straw management practice. Soil Sci Soc Am J 65(4):1143–1152CrossRefGoogle Scholar
  8. Bird JA, van Kessel C, Horwath WR (2002) Nitrogen dynamics in humic fractions under alternative straw management in temperate rice. Soil Sci Soc Am J 66(2):478–488CrossRefGoogle Scholar
  9. Blakemore LC, Searle PL, Daly BK (1987) Methods for chemical analysis of soils. NZ Soil Bureau Sci Rep 80:7Google Scholar
  10. Borken W, Matzner E (2009) Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob Change Biol 15(4):808–824. doi:10.1111/j.1365-2486.2008.01681.x CrossRefGoogle Scholar
  11. Bouman BAM, Castaneda AR, Bhuiyan SI (2002) Nitrate and pesticide contamination of groundwater under rice-based cropping systems: past and current evidence from the Philippines. Agric Ecosyst Environ 92(2–3):185–199. doi:10.1016/s0167-8809(01)00297-3 CrossRefGoogle Scholar
  12. Bouman BAM, Humphreys E, Tuong TP, Barker R (2007) Rice and water. In: Sparks DL (ed) Advances in agronomy, Vol 92. Elsevier Academic Press Inc, San Diego, pp 187–237. doi:10.1016/s0065-2113(04)92004-4
  13. Braker G, Schwarz J, Conrad R (2010) Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol Ecol 73(1):134–148. doi:10.1111/j.1574-6941.2010.00884.x PubMedGoogle Scholar
  14. Buresh RJ, Patrick WH Jr (1978) Nitrate reduction to ammonium in anaerobic soil. Soil Sci Soc Am J 42:913–918CrossRefGoogle Scholar
  15. Buresh RJ, Woodhead T, Shepherd KD, Flordelis E, Cabangon RC (1989) Nitrate accumulation and loss in a mungbean lowland rice cropping system. Soil Sci Soc Am J 53(2):477–482CrossRefGoogle Scholar
  16. Buresh RJ, Castillo EG, Dedatta SK (1993) Nitrogen losses in puddled soils as affected by timing of water-deficit and nitrogen-fertilization. Plant Soil 157(2):197–206. doi:10.1007/bf00011048 CrossRefGoogle Scholar
  17. Buresh RJ, Reddy KR, Van Kessel C (2008) Nitrogen transformations in submerged soils. In: Stuart J, Schepers WR (eds) Nitrogen in agricultural systems. Agronomy Monograph, vol 49. American Society of Agronomy, Madison, WI pp 401–436Google Scholar
  18. Burns DA, Boyer EW, Elliott EM, Kendall C (2009) Sources and transformations of nitrate from streams draining varying land uses: evidence from dual isotope analysis. J Environ Qual 38(3):1149–1159. doi:10.2134/jeq2008.0371 PubMedCrossRefGoogle Scholar
  19. Cai ZC, Xing GX, Yan XY, Xu H, Tsuruta H, Yagi K, Minami K (1997) Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management. Plant Soil 196(1):7–14. doi:10.1023/a:1004263405020 CrossRefGoogle Scholar
  20. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of Earth’s nitrogen cycle. Science 330(6001):192–196. doi:10.1126/science.1186120 PubMedCrossRefGoogle Scholar
  21. Casciotti KL, Sigman DM, Ward BB (2003) Linking diversity and stable isotope fractionation in ammonia-oxidizing bacteria. Geomicrobiol J 20(4):335–353. doi:10.1080/01490450303895 CrossRefGoogle Scholar
  22. Casciotti KL, McIlvin M, Buchwald C (2010) Oxygen isotopic exchange and fractionation during bacterial ammonia oxidation. Limnol Oceanogr 55(2):753–762. doi:10.4319/lo.2009.55.2.0753 CrossRefGoogle Scholar
  23. Casciotti KL, Buchwald C, McIlvin M (2013) Implications of nitrate and nitrite isotopic measurements for the mechanisms of nitrogen cycling in the Peru oxygen deficient zone. Deep-Sea Res Part I-Oceanogr Res Pap 80:78–93. doi:10.1016/j.dsr.2013.05.017 CrossRefGoogle Scholar
  24. Cassman KG, Peng S, Olk DC, Ladha JK, Reichardt W, Dobermann A, Singh U (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crop Res 56(1–2):7–39. doi:10.1016/s0378-4290(97)00140-8 CrossRefGoogle Scholar
  25. Cassman KG, Dobermann A, Walters DT (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31(2):132–140. doi:10.1639/0044-7447(2002)031[0132:ANUEAN]2.0.CO;2PubMedGoogle Scholar
  26. Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Resour 28:315–358. doi:10.1146/annurev.energy.28.040202.122858 CrossRefGoogle Scholar
  27. Chen M, Wu H, Wo F (2007) Nitrate vertical transport in the main paddy soils of Tai Lake region, China. Geoderma 142(1–2):136–141. doi:10.1016/j.geoderma.2007.08.004 CrossRefGoogle Scholar
  28. Davidson EA, Chorover J, Dail DB (2003) A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biol 9(2):228–236. doi:10.1046/j.1365-2486.2003.00592.x CrossRefGoogle Scholar
  29. DeDatta SK (1995) Nitrogen transformations in wetland rice ecosystems. Fertil Res 42(1–3):193–203CrossRefGoogle Scholar
  30. Dhondt K, Boeckx P, Van Cleemput O, Hofman G (2003) Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of N-15 in NO3. Rapid Commun Mass Spectrom 17(23):2597–2604. doi:10.1002/rcm.1226 PubMedCrossRefGoogle Scholar
  31. Dobermann A, Cassman KG (2005) Cereal area and nitrogen use efficiency are drivers of future nitrogen fertilizer consumption. Sci China Ser C-Life Sci 48:745–758. doi:10.1360/062005-268 Google Scholar
  32. Dobermann A, Gaunt JL, Neue HU, Grant IF, Adviento MA, Pampolino MF (1994) Spatial and temporal variability of ammonium in flooded rice fields. Soil Sci Soc Am J 58(6):1708–1717CrossRefGoogle Scholar
  33. Dong NM, Brandt KK, Sorensen J, Hung NN, Hach CV, Tan PS, Dalsgaard T (2012) Effects of alternating wetting and drying versus continuous flooding on fertilizer nitrogen fate in rice fields in the Mekong Delta, Vietnam. Soil Biol Biochem 47:166–174. doi:10.1016/j.soilbio.2011.12.028 CrossRefGoogle Scholar
  34. Endo A, Mishima S-I, Kohyama K (2012) Nitrate percolation and discharge in cropped Andosols and Gray lowland soils of Japan. Nutr Cycl Agroecosyst 1–21. doi:10.1007/s10705-012-9544-7
  35. Fang YT, Koba K, Makabe A, Zhu FF, Fan SY, Liu XY, Yoh M (2012) Low delta O-18 values of nitrate produced from nitrification in temperate forest soils. Environ Sci Technol 46(16):8723–8730. doi:10.1021/es300510r PubMedCrossRefGoogle Scholar
  36. Fujii C, Nakagawa T, Onodera Y, Matsutani N, Sasada K, Takahashi R, Tokuyama T (2010) Succession and community composition of ammonia-oxidizing archaea and bacteria in bulk soil of a Japanese paddy field. Soil Sci Plant Nutr 56(2):212–219. doi:10.1111/j.1747-0765.2010.00449.x CrossRefGoogle Scholar
  37. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53(4):341–356CrossRefGoogle Scholar
  38. George T, Ladha JK, Buresh RJ, Garrity DP (1993) Nitrate dynamics during the aerobic soil phase in lowland rice-based cropping systems. Soil Sci Soc Am J 57(6):1526–1532CrossRefGoogle Scholar
  39. Granger J, Sigman DM, Lehmann MF, Tortell PD (2008) Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. Limnol Oceanogr 53(6):2533–2545. doi:10.4319/lo.2008.53.6.2533 CrossRefGoogle Scholar
  40. Henckel T, Conrad R (1998) Characterization of microbial NO production, N2O production and CH4 oxidation initiated by aeration of anoxic rice field soil. Biogeochem 40(1):17–36CrossRefGoogle Scholar
  41. Hobbie EA, Ouimette AP (2009) Controls of nitrogen isotope patterns in soil profiles. Biogeochem 95(2–3):355–371. doi:10.1007/s10533-009-9328-6 CrossRefGoogle Scholar
  42. Hogberg P (1997) Tansley review No 95—N-15 natural abundance in soil-plant systems. New Phytol 137(2):179–203. doi:10.1046/j.1469-8137.1997.00808.x CrossRefGoogle Scholar
  43. Ishii S, Ikeda S, Minamisawa K, Senoo K (2011) Nitrogen cycling in rice paddy environments: past achievements and future challenges. Microbes Environ 26(4):282–292. doi:10.1264/jsme2.ME11293 PubMedCrossRefGoogle Scholar
  44. Jin ZF, Pan ZY, Jin MT, Li FL, Wan Y, Gu B (2012) Determination of nitrate contamination sources using isotopic and chemical indicators in an agricultural region in China. Agric Ecosyst Environ 155:78–86. doi:10.1016/j.agee.2012.03.017 CrossRefGoogle Scholar
  45. Johnson-Beebout SE, Angeles OR, Alberto MCR, Buresh RJ (2009) Simultaneous minimization of nitrous oxide and methane emission from rice paddy soils is improbable due to redox potential changes with depth in a greenhouse experiment without plants. Geoderma 149(1–2):45–53. doi:10.1016/j.geoderma.2008.11.012 CrossRefGoogle Scholar
  46. Kempers AJ, Zweers A (1986) Ammonium determination in soil extracts by the salicylate method. Commun Soil Sci Plant Anal 17(7):715–723. doi:10.1080/00103628609367745 CrossRefGoogle Scholar
  47. Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, Mcdonell JJ (eds) Isotope tracers in catchment hydrology. Elsevier Science B.V, Amsterdam, pp 519–576CrossRefGoogle Scholar
  48. Koba K, Tokuchi N, Wada E, Nakajima T, Iwatsubo G (1997) Intermittent denitrification: the application of a N-15 natural abundance method to a forested ecosystem. Geochim Cosmochim Acta 61(23):5043–5050. doi:10.1016/s0016-7037(97)00284-6 CrossRefGoogle Scholar
  49. Kögel-Knabner I, Amelung W, Cao ZH, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Kolbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157(1–2):1–14. doi:10.1016/j.geoderma.2010.03.009 CrossRefGoogle Scholar
  50. Kool DM, Wrage N, Zechmeister-Boltenstern S, Pfeffer M, Brus D, Oenema O, Van Groenigen JW (2010) Nitrifier denitrification can be a source of N2O from soil: a revised approach to the dual-isotope labelling method. Eur J Soil Sci 61(5):759–772. doi:10.1111/j.1365-2389.2010.01270.x CrossRefGoogle Scholar
  51. Linquist BA, Brouder SM, Hill JE (2006) Winter straw and water management effects on soil nitrogen dynamics in California rice systems. Agron J 98(4):1050–1059. doi:10.2134/agronj2005.0350 CrossRefGoogle Scholar
  52. Mandal B, Vlek PLG, Mandal LN (1999) Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biol Fertil Soils 28(4):329–342. doi:10.1007/s003740050501 CrossRefGoogle Scholar
  53. Mariotti A, Germon JC, Hubert P, Kaiser P, Letolle R, Tardieux A, Tardieux P (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles: illustration for the denitrification and nitrification processes. Plant Soil 62(3):413–430. doi:10.1007/bf02374138 CrossRefGoogle Scholar
  54. Mariotti A, Germon JC, Leclerc A (1982) Nitrogen isotope fractionation associated with the NO2–N2O step of denitrification in soils. Can J Soil Sci 62(2):227–241CrossRefGoogle Scholar
  55. McIlvin MR, Altabet MA (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem 77(17):5589–5595. doi:10.1021/ac050528s PubMedCrossRefGoogle Scholar
  56. Möbius J (2013) Isotope fractionation during nitrogen remineralization (ammonification): implications for nitrogen isotope biogeochemistry. Geochim Cosmochim Acta 105:422–432. doi:10.1016/j.gca.2012.11.048 CrossRefGoogle Scholar
  57. Olk DC, Cassman KG, Schmidt-Rohr K, Anders MM, Mao JD, Deenik JL (2006) Chemical stabilization of soil organic nitrogen by phenolic lignin residues in anaerobic agroecosystems. Soil Biol Biochem 38(11):3303–3312. doi:10.1016/j.soilbio.2006.04.009 CrossRefGoogle Scholar
  58. Rasche F, Cadisch G (2013) The molecular microbial perspective of organic matter turnover and nutrient cycling in tropical agroecosystems. What do we know? Biol Fertil Soils 49(3):251–262. doi:10.1007/s00374-013-0775-9 CrossRefGoogle Scholar
  59. Ringrose-Voase AJ, Kirby JM, Djoyowasito G, Sanidad WB, Serrano C, Lando TM (2000) Changes to the physical properties of soils puddled for rice during drying. Soil Tillage Res 56(1–2):83–104. doi:10.1016/s0167-1987(00)00124-0 CrossRefGoogle Scholar
  60. Rivett MO, Buss SR, Morgan P, Smith JWN, Bemment CD (2008) Nitrate attenuation in groundwater: a review of biogeochemical controlling processes. Water Res 42(16):4215–4232. doi:10.1016/j.watres.2008.07.020 PubMedCrossRefGoogle Scholar
  61. Ros GH, Hoffland E, van Kessel C, Temminghoff EJM (2009) Extractable and dissolved soil organic nitrogen: a quantitative assessment. Soil Biol Biochem 41(6):1029–1039. doi:10.1016/j.soilbio.2009.01.011 CrossRefGoogle Scholar
  62. Rutting T, Boeckx P, Muller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8(7):1779–1791. doi:10.5194/bg-8-1779-2011 CrossRefGoogle Scholar
  63. Santiago-Ventura T, Bravo M, Daez C, Ventura V, Watanabe I, App AA (1986) Effects of N fertilizers, straw, and dry fallow on the nitrogen balance of a flooded soil planted with rice. Plant Soil 93(3):405–411. doi:10.1007/bf02374291
  64. Schimel JP, Bennett J (2004) Nitrogen mineralization: challenges of a changing paradigm. Ecology 85(3):591–602. doi:10.1890/03-8002 CrossRefGoogle Scholar
  65. Sebilo M, Billen G, Grably M, Mariotti A (2003) Isotopic composition of nitrate–nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochem 63(1):35–51. doi:10.1023/a:1023362923881 CrossRefGoogle Scholar
  66. Sherlock RR, Goh KM (1985) Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture. 2. Theoretical derivation of a simplified model. Fertil Res 6(1):3–22. doi:10.1007/bf01058161 CrossRefGoogle Scholar
  67. Sigman DM, Robinson R, Knapp AN, van Geen A, McCorkle DC, Brandes JA, Thunell RC (2003) Distinguishing between water column and sedimentary denitrification in the Santa Barbara Basin using the stable isotopes of nitrate. Geochem Geophys Geosyst 4:20. doi:10.1029/2002gc000384 CrossRefGoogle Scholar
  68. Stark JM, Firestone MK (1995) Mechanisms for soil-moisture effects on activity of nitrifying bacteria. Appl Environ Microbiol 61(1):218–221PubMedCentralPubMedGoogle Scholar
  69. Wells NS, Clough TJ, Baisden WT (in press) Ammonia volatilisation is not the dominant factor in determining the isotopic composition of soil nitrate in pasture systems. Agric Ecosyst Environ Google Scholar
  70. Witt C, Cassman KG, Ottow JCG, Biker U (1998) Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biol Fertil Soils 28(1):71–80. doi:10.1007/s003740050465 CrossRefGoogle Scholar
  71. Witt C, Cassman KG, Olk DC, Biker U, Liboon SP, Samson MI, Ottow JCG (2000) Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems. Plant Soil 225(1–2):263–278. doi:10.1023/a:1026594118145 CrossRefGoogle Scholar
  72. Xiong ZQ, Huang TQ, Ma YC, Xing GX, Zhu ZL (2010) Nitrate and ammonium leaching in variable- and permanent-charge paddy soils. Pedosphere 20(2):209–216. doi:10.1016/s1002-0160(10)60008-2 CrossRefGoogle Scholar
  73. Yao SH, Zhang B, Hu F (2011) Soil biophysical controls over rice straw decomposition and sequestration in soil: the effects of drying intensity and frequency of drying and wetting cycles. Soil Biol Biochem 43(3):590–599. doi:10.1016/j.soilbio.2010.11.027 CrossRefGoogle Scholar
  74. Zbieranowski AL, Aherne J (2012) Ambient concentrations of atmospheric ammonia, nitrogen dioxide and nitric acid across a rural–urban–agricultural transect in southern Ontario, Canada. Atmos Environ 62:481–491CrossRefGoogle Scholar
  75. Zhang JS, Zhang FP, Yang JH, Wang JP, Cai ML, Li CF, Cao CG (2011) Emissions of N2O and NH3, and nitrogen leaching from direct seeded rice under different tillage practices in central China. Agric Ecosyst Environ 140(1–2):164–173. doi:10.1016/j.agee.2010.11.023 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Naomi S. Wells
    • 1
    • 3
  • Tim J. Clough
    • 1
  • Sarah E. Johnson-Beebout
    • 2
  • Roland J. Buresh
    • 2
  1. 1.Department of Soil and Physical SciencesFaculty of Agriculture and Life SciencesLincolnNew Zealand
  2. 2.Crop and Environmental Sciences DivisionInternational Rice Research InstituteMetro ManilaPhilippines
  3. 3.Department of Catchment HydrologyHelmholtz Centre for Environmental Research - UFZHalle (Saale)Germany

Personalised recommendations