Nutrient Cycling in Agroecosystems

, Volume 96, Issue 1, pp 123–131 | Cite as

Phosphorus and potassium balance in a corn–soybean rotation under no-till and chiseling

Original Article

Abstract

Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil–plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields.

Keywords

Nutrient use efficiency Cover crops Soil management Nutrient cycling 

References

  1. Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950. doi:10.1081/CSS-100104098 CrossRefGoogle Scholar
  2. Benghough AG, Mullins CE (1990) Mechanical impedance to root growth: a review of experimental techniques and root growth responses. J Soil Sci 41:341–358. doi:10.1111/j.1365-2389.1990.tb00070.x CrossRefGoogle Scholar
  3. Calonego JC, Rosolem CA (2008) Estabilidade de agregados do solo após manejo com rotações de culturas e escarificação. Rev Bras Cienc Solo 32:1399–1407. doi:10.1590/S0100-06832008000400004 CrossRefGoogle Scholar
  4. Calonego JC, Rosolem CA (2010) Soybean root growth and yield in rotation with cover crops under chiseling and no-till. Eur J Agron 33:242–249. doi:10.1016/j.eja.2010.06.002 CrossRefGoogle Scholar
  5. Calonego JC, Foloni JSS, Rosolem CA (2005) Lixiviação de potássio da palha de plantas de cobertura em diferentes estádios de senescência após a dessecação química. Rev Bras Cienc Solo 29:99–108. doi:10.1590/S0100-06832005000100011 CrossRefGoogle Scholar
  6. Foloni JSS, Tiritan CS, Calonego JC, Alves Junior J (2008) Aplicação de fosfato natural e reciclagem de fósforo por milheto, braquiária, milho e soja. Rev Bras Cienc Solo 32:1147–1155. doi:10.1590/S0100-06832008000300023 CrossRefGoogle Scholar
  7. Franchini JC, Miyazawa M, Pavan MA, Malavolta E (1999) Dinâmica de íons em solo ácido lixiviado com extratos de resíduos de adubos verdes e soluções puras de ácidos orgânicos. Pesq Agropec Bras 34:2267–2276. doi:10.1590/S0100-204X1999001200014 CrossRefGoogle Scholar
  8. Garcia RA, Crusciol CAC, Calonego JC, Rosolem CA (2008) Potassium cycling in a corn-brachiaria cropping system. Eur J Agron 28:579–585. doi:10.1016/j.eja.2008.01.002 CrossRefGoogle Scholar
  9. Hanáčková E, Macák M, Candráková E (2008) The nutrients balance of crop rotation as an indicator of sustainable farming on arable. J Cent Eur Agric 9:431–438Google Scholar
  10. Johnston AE, Goulding KWT (1992) Potassium in ecosystems, biogeochemical fluxes of cations in agro-and forest-systems. International Potash Institute, BaselGoogle Scholar
  11. Klepker D, Anghinoni I (1995) Características físicas e químicas do solo afetadas por métodos de preparo e modos de adubação. Rev Bras Cienc Solo 19:395–401. doi:/10.1590/S0100-06832003000600014 Google Scholar
  12. Mengel K, Kirkby EA (1987) Principles of plant nutrition, 4th edn. International Potash Institute, BernGoogle Scholar
  13. Oenema O, Kros H, De Vries W (2003) Approaches and uncertainties in nutrient budgets: implications for nutrient management and environmental policies. Eur J Agron 20:3–16. doi:10.1016/S1161-0301(03)00067-4 CrossRefGoogle Scholar
  14. Olibone D, Encide-Olibone AP, Rosolem CA (2010) Least limiting water range and crop yields as affected by crop rotations and tillage. Soil Use Manag 26:485–493. doi:10.1111/j.1475-2743.2010.00301.x CrossRefGoogle Scholar
  15. Pavinato PS, Rosolem CA (2008) Disponibilidade de nutrientes no solo—decomposição e liberação de compostos orgânicos de resíduos vegetais. Rev Bras Cienc Solo 32:911–920. doi:/10.1590/S0100-06832008000300001 CrossRefGoogle Scholar
  16. Pivetta LA, Castoldi G, Santos GP, Rosolem CA (2011) Crescimento e atividade de raízes de soja em função do sistema de produção. Pesq Agropec Bras 46:1547–1554. doi:/10.1590/S0100-204X2011001100017 CrossRefGoogle Scholar
  17. Rosolem CA, Calonego JC (2013) Phosphorus and potassium budget in the soil-plant system in crop rotations under no-till. Soil Tillage Res 126:127–133. doi:10.1016/j.still.2012.08.003 CrossRefGoogle Scholar
  18. Rosolem CA, Calonego JC, Foloni JSS, Garcia RA (2007) Potássio lixiviado da palha de aveia-preta e milheto após a dessecação química. Pesq Agropec Bras 42:1169–1175. doi:/10.1590/S0100-204X2007000800014 Google Scholar
  19. Rosolem CA, Sgariboldi T, Garcia RA, Calonego JC (2010) Potassium leaching as affected by soil texture and residual fertilization in tropical soils. Commun Soil Sci Plant Anal 41:1934–1943. doi:/10.1080/00103624.2010.495804 CrossRefGoogle Scholar
  20. Rosolem CA, Merlin A, Bull JCL (2013) Forms of soil phosphorus as afected by ruzigrass and fertilizer. Soil Sci Plant Nutr. (in press)Google Scholar
  21. SAS (2008) Statistical analysis system: Realease 9.1.3, (software). Cary, Sas InstituteGoogle Scholar
  22. Silva AP, Kay BD, Perfect E (1994) Characterization of the least limiting water range. Soil Sci Soc Am J 58:1775–1781. doi:10.2136/sssaj1994.03615995005800060028x Google Scholar
  23. Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. USDA-Natural Resources Conservation Service, Washington, DCGoogle Scholar
  24. Sposito G (1989) The chemistry of soil. Oxford University Press, New YorkGoogle Scholar
  25. Stone LF, Silveira PM (2001) Efeitos do sistema de preparo e da rotação de culturas na porosidade e densidade do solo. Re Bras Ci Solo 25:395–401Google Scholar
  26. van Raij B, Andrade JC, Cantarella H, Quaggio JA (2001) Análise química para avaliação da fertilidade de solos tropicais. Instituto Agronômico, CampinasGoogle Scholar
  27. Williams SM, Weil RR (2004) Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci Soc Am J 68:1403–1409. doi:10.2136/sssaj2004.1403 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Crop Science, College of Agricultural SciencesSão Paulo State UniversityBotucatuBrazil

Personalised recommendations