Nutrient Cycling in Agroecosystems

, Volume 94, Issue 2–3, pp 123–160 | Cite as

Symbiotic dinitrogen fixation by trees: an underestimated resource in agroforestry systems?

  • Pekka Nygren
  • María P. Fernández
  • Jean-Michel Harmand
  • Humberto A. Leblanc
Review Article


We compiled quantitative estimates on symbiotic N2 fixation by trees in agroforestry systems (AFS) in order to evaluate the critical environmental and management factors that affect the benefit from N2 fixation to system N economy. The so-called “N2-fixing tree” is a tripartite symbiotic system composed of the plant, N2-fixing bacteria, and mycorrhizae-forming fungi. Almost 100 recognised rhizobial species associated with legumes do not form an evolutionary homologous clade and are functionally diverse. The global bacterial diversity is still unknown. Actinorrhizal symbioses in AFS remain almost unstudied. Dinitrogen fixation in AFS should be quantified using N isotopic methods or long-term system N balances. The general average ± standard deviation of tree dependency on N2 fixation (%Ndfa) in 38 cases using N isotopic analyses was 59 ± 16.6 %. Under humid and sub-humid conditions, the percentage was higher in young (69 ± 10.7 %) and periodically pruned trees (63 ± 11.8 %) than in free-growing trees (54 ± 11.7 %). High variability was observed in drylands (range 10–84 %) indicating need for careful species and provenance selection in these areas. Annual N2 fixation was the highest in improved fallow and protein bank systems, 300–650 kg [N] ha−1. General average for 16 very variable AFS was 246 kg [N] ha−1, which is enough for fulfilling crop N needs for sustained or increasing yield in low-input agriculture and reducing N-fertiliser use in large-scale agribusiness. Leaf litter and green mulch applications release N slowly to the soil and mostly benefit the crop through long-term soil improvement. Root and nodule turnover and N rhizodeposition from N2-fixing trees are sources of easily available N for the crop yet they have been largely ignored in agroforestry research. There is also increasing evidence on direct N transfer from N2-fixing trees to crops, e.g. via common mycelial networks of mycorrhizal fungi or absorption of tree root exudates by the crop. Research on the below-ground tree-crop-microbia interactions is needed for fully understanding and managing N2 fixation in AFS.


15Actinorrhizal trees Legume trees Management practices Nitrogen balance Rhizobial symbiosis 



An early version of this review was presented in the 2nd World Congress of Agroforestry (Nairobi, August 2009). We thank Dr Anne-Marie Domenach for inspiring discussions and comments on a draft of this review. The contribution of PN was funded by the Academy of Finland (grant 129166).


  1. Acosta-Durán C, Martínez-Romero E (2002) Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici. Arch Microbiol 178:161–164PubMedCrossRefGoogle Scholar
  2. Akimov V, Dobritsa S (1992) Grouping of Frankia strains on the basis of DNA relatedness. Syst Appl Microbiol 15:372–379CrossRefGoogle Scholar
  3. Akinnifesi FK, Chirwa PW, Ajayi OC, Sileshi G, Matakala P, Kwesiga FR, Harawa H, Makumba W (2008) Contributions of agroforestry research to livelihood of smallholder farmers in Southern Africa: 1. Taking stock of the adaptation, adoption and impact of fertilizer tree options. Agric J 3:58–75Google Scholar
  4. Akinnifesi FK, Ajayi OC, Sileshi G, Chirwa PW, Chianu J (2010) Fertiliser trees for sustainable food security in the maize-based production systems of East and Southern Africa. A review. Agron Sustain Dev 30:615–629CrossRefGoogle Scholar
  5. Allison SD, Nielsen C, Hughes RF (2006) Elevated enzyme activities in soils under the invasive nitrogen-fixing tree Falcataria moluccana. Soil Biol Biochem 38:1537–1544CrossRefGoogle Scholar
  6. Amarger N, Macheret V, Laguerre G (1997) Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 47:996–1006PubMedCrossRefGoogle Scholar
  7. Amtmann A, Blatt MR (2009) Tansley review. Regulation of macronutrient transport. New Phytol 181:35–52PubMedCrossRefGoogle Scholar
  8. An C, Riggsby W, Mullin B (1985) Relationships of Frankia isolates based on deoxyribonucleic acid homology studies. Int J Syst Bacteriol 35:140–146CrossRefGoogle Scholar
  9. André S, Galiana A, Le Roux C, Prin Y, Neyra M, Duponnois R (2005) Ectomycorrhizal symbiosis enhanced the efficiency of inoculation with two Bradyrhizobium strains and Acacia holosericea growth. Mycorrhiza 15:357–364PubMedCrossRefGoogle Scholar
  10. Andrews M, James EK, Sprent JI, Boddey RM, Gross E, dos Reis FB (2011) Nitrogen fixation in legumes and actinorhizal plants in natural ecosystems: values obtained using 15N natural abundance. Plant Ecol Diversity 4:131–140CrossRefGoogle Scholar
  11. Araújo AFS, Burity HA, Lyra M do CCP (2001) Influência de diferentes níveis de nitrogênio e fósforo em leucena inoculada com Rhizobium e fungo micorrízico arbuscular. Ecossistema 26:35–38Google Scholar
  12. Arnebrant K, Ek H, Finlay RD, Söderström B (1993) Nitrogen translocation between Alnus glutinosa (L.) Gaertn, seedlings inoculated with Frankia sp. and Pinus contorta Doug. ex Loud seedlings connected by a common ectomycorrhizal mycelium. New Phytol 124:231–242CrossRefGoogle Scholar
  13. Aronson J, Ovalle C, Avendaño J, Longeri L, del Pozo A (2002) Agroforestry tree selection in central Chile: biological nitrogen fixation and early plant growth in six dryland species. Agrofor Syst 56:155–166CrossRefGoogle Scholar
  14. Augusto L, Crampon N, Saur E, Bakker MR, Pellerin S, de Lavaissiere C, Trichet P (2005) High rates of nitrogen fixation of Ulex species in the understory of maritime pine stands and the potential effect of phosphorus fertilization. Can J For Res 35:1183–1192CrossRefGoogle Scholar
  15. Babbar LI, Zak DR (1994) Nitrogen cycling in coffee agroecosystems: net nitrogen mineralization and nitrification in the presence and absence of shade trees. Agric Ecosys Environ 48:107–113CrossRefGoogle Scholar
  16. Babbar LI, Zak DR (1995) Nitrogen loss from coffee agroecosystems in Costa Rica. Leaching and denitrification in the presence and absence of shade trees. J Environ Qual 24:227–233CrossRefGoogle Scholar
  17. Bala A, Giller KE (2001) Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytol 149:495–507CrossRefGoogle Scholar
  18. Bala A, Giller KE (2006) Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutr Cycling Agroecosys 76:319–330CrossRefGoogle Scholar
  19. Bala A, Murphy P, Giller KE (2003) Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol Ecol 12:917–930PubMedCrossRefGoogle Scholar
  20. Balachandar D, Raja P, Kumar K, Sundaram SP (2007) Non-rhizobial nodulation in legumes. Biotech Mol Biol Rev 2:49–57Google Scholar
  21. Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922CrossRefGoogle Scholar
  22. Barea JM, Azcón R, Azcón-Aguilar C (1992) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems. In: Norris JR, Read DJ, Varma AK (eds) Techniques in the study of mycorrhiza. Methods in Microbiology, vol 24. Academic Press, London, pp 391–416Google Scholar
  23. Barnet YM (1991) Ecology of legume root-nodule bacteria. In: Dilworth MJ, Glenn A (eds) Biology and biochemistry of nitrogen fixation. Elsevier, Amsterdam, pp 199–228Google Scholar
  24. Barrios E, Kwesiga F, Buresh RJ, Sprent JI (1997) Light fraction soil organic matter and available nitrogen following trees and maize. Soil Sci Soc Am J 61:826–831CrossRefGoogle Scholar
  25. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164CrossRefGoogle Scholar
  26. Berliner R, Torrey J (1989) On tripartite Frankia-mycorrhizal associations in the Myricaceae. Can J Bot 67:1708–1712CrossRefGoogle Scholar
  27. Bernhard-Reversat F (1996) Nitrogen cycling in tree plantations grown on a poor sandy savanna soil in Congo. Appl Soil Ecol 4:161–172CrossRefGoogle Scholar
  28. Berninger F, Salas E (2003) Biomass dynamics of Erythrina lanceolata as influenced by shoot-pruning intensity in Costa Rica. Agrofor Syst 57:19–28CrossRefGoogle Scholar
  29. Bertsch F (2003) Absorción de nutrimentos por los cultivos. ACCS, San JoséGoogle Scholar
  30. Bethlenfalvay GJ (1992) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing legumes: problems and prospects. In: Norris JR, Read DJ, Varma AK (eds) Techniques in the study of mycorrhiza. Methods in microbiology vol 24. Academic Press, London, pp 375–388CrossRefGoogle Scholar
  31. Bethlenfalvay GJ, Newton WE (1991) Agro-ecological aspects of the mycorrhizal, nitrogen-fixing legume symbiosis. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Beltsville symposia in agricultural research 14. Kluwer, Dordrecht, pp 349–354Google Scholar
  32. Bethlenfalvay GJ, Reyes-Solis MG, Camel SB, Ferrera-Cerrato R (1991) Nutrient transfer between the root zones of soybean and maize plants connected by a common mycorrhizal mycelium. Physiol Plantarum 82:423–432CrossRefGoogle Scholar
  33. Binkley D, Senock R, Cromack K Jr (2003) Phosphorus limitation on nitrogen fixation by Falcataria seedlings. For Ecol Manag 186:171–176CrossRefGoogle Scholar
  34. Blair G, Catchpoole D, Horne P (1990) Forage tree legumes: their management and contribution to the nitrogen economy of wet and humid tropical environments. Adv Agron 44:27–54CrossRefGoogle Scholar
  35. Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycling Agroecosys 57:235–270CrossRefGoogle Scholar
  36. Boivin C, Giraud E (1999) Molecular symbiotic characterization of rhizobia: towards a polyphasic approach using Nod factors and nod genes. In: Martínez-Romero E, Hernández G (eds) Highlights of nitrogen fixation research. Kluwer/Plenum Publishers, New York, pp 295–299CrossRefGoogle Scholar
  37. Bouillet JP, Laclau JP, Gonçalves JLM, Moreira MZ, Trivelin PCO, Jourdan C, Silva EV, Piccolo MC, Tsai SM, Galiana A (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil 2: Nitrogen accumulation in the stands and biological N2 fixation. For Ecol Manag 255:3918–3930CrossRefGoogle Scholar
  38. Bryan JA (2000) Nitrogen fixation of leguminous trees in traditional and modern agroforestry systems. In: Ashton MS, Montagnini F (eds) The silvicultural basis for agroforestry systems. CRC Press, Boca Raton, pp 161–182Google Scholar
  39. Burleigh SH, Dawson JO (1994) Occurence of Myrica-nodulating Frankia in Hawaian volcanic soils. Plant Soil 164:283–289CrossRefGoogle Scholar
  40. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84CrossRefGoogle Scholar
  41. Casida LE Jr (1982) Ensifer adhaerens, gen. nov., sp. nov. a bacterial predator of bacteria in soil. Int J Syst Bacteriol 32:339–345CrossRefGoogle Scholar
  42. Castenholz RW (2001) Cyanobacteria, oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol I, 2nd edn. Springer, Berlin, pp 473–599CrossRefGoogle Scholar
  43. Cavard X, Augusto L, Saur E, Trichet P (2007) Field effect of P fertilization on N2 fixation rate of Ulex europaeus. Ann For Sci 64:875–881CrossRefGoogle Scholar
  44. Chalk PM, Ladha JK (1999) Estimation of legume symbiotic dependence: an evaluation of techniques based on 15N dilution. Soil Biol Biochem 31:1901–1917CrossRefGoogle Scholar
  45. Chatarpaul L, Chakravarty P, Subramaniam P (1989) Studies in tetrapartite symbioses. I. Role of ecto- and endomycorrhizal fungi and Frankia on the growth performance of Alnus incana. Plant Soil 118:145–150CrossRefGoogle Scholar
  46. Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873PubMedCrossRefGoogle Scholar
  47. Chesney P, Nygren P (2002) Fine root and nodule dynamics of periodically pruned hedgerow trees in an alley cropping system in Costa Rica. Agrofor Syst 56:259–269CrossRefGoogle Scholar
  48. Chikowo R, Mapfumo P, Nyamugafata P, Giller KE (2004) Woody legume fallow productivity, biological N2-fixation and residual benefits to two successive maize crops in Zimbabwe. Plant Soil 262:303–315CrossRefGoogle Scholar
  49. Chintu R, Zaharah AR (2003) Nitrogen uptake of maize (Zea mays. L) from isotope-labeled biomass of Paraserianthes falcataria grown under controlled conditions. Agrofor Syst 57:101–107CrossRefGoogle Scholar
  50. Colonna JP, Thoen D, Ducoussu M, Badji S (1991) Comparative effects of Glomus mosseae and P fertilizer on foliar mineral composition of Acacia seneyal seedlings inoculated with Rhizobium. Mycorrhiza 1:35–38CrossRefGoogle Scholar
  51. Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ (2009) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol 183:980–992PubMedCrossRefGoogle Scholar
  52. Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937PubMedCrossRefGoogle Scholar
  53. DaMatta FM, Ronchi CP, Maestri M, Barros RS (2007) Ecophysiology of coffee growth and production. Braz J Plant Physiol 19:485–510CrossRefGoogle Scholar
  54. Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen fixing actinorhizal symbioses. Springer, The Netherlands, pp 199–227CrossRefGoogle Scholar
  55. de Lajudie P, Willems A, Pot B, Dewettinck D, Maestrojuan G, Neyra M, Collins MD, Dreyfus B, Kersters K, Gillis M (1994) Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb. nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga sp. nov. Int J Syst Bacteriol 44:715–733CrossRefGoogle Scholar
  56. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F, Hoste B, Torck U, Neyra M, Collins MD, Lindström K, Dreyfus B, Gillis M (1998) Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 48:369–382PubMedCrossRefGoogle Scholar
  57. Diagne O, Ingleby K, Deans JD, Lindley DK, Diaité I, Neyra M (2001) Mycorrhizal inoculum potential of soils from alley cropping plots in Sénégal. For Ecol Manag 146:35–43CrossRefGoogle Scholar
  58. Diem HG, Dommergues YR (1990) Current and potential use and management of Casuarinaceae in the tropics and subtropic. In: Swintzer CR, Tjepkema JD (eds) The biology of Frankia and actinorhizal plants. Academic Press, New York, pp 365–385Google Scholar
  59. Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to senegalese soils in relation to salinity and pH of the samplings sites. Microbial Ecol 54:553–566CrossRefGoogle Scholar
  60. Diouf A, Diop TA, Ndoye I, Gueye M (2008) Response of Gliricidia sepium tree to phosphorus application and inoculations with Glomus aggregatum and rhizobial strains in a sub-Saharian sandy soil. Afr J Biotechnol 7:766–771Google Scholar
  61. Domenach AM (1995) Approche de l’estimation de la fixation symbiotique des arbres par l’utilisation des abondances isotopiques naturelles de l’azote. In: Maillard P, Bonhomme R (eds) Utilisation des isotopes stables pour l’etude du fonctionnement des plantes, Paris 16–17 décembre 1993. Les Colloques 70, INRA Editions, Versailles, France, pp 159–172Google Scholar
  62. Domenach AM, Kurdali F, Bardin R (1989) Estimation of symbiotic dinitrogen fixation in alder forest by the method based on natural 15N abundance. Plant Soil 118:51–59CrossRefGoogle Scholar
  63. Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98CrossRefGoogle Scholar
  64. Duhoux E, Dommergues YR (1985) The use of nitrogen fixing trees in forest and soil restoration in the tropics. In: Ssali H, Keya SO (eds) Biological nitrogen fixation in Africa: proceedings of the first conference of the African association for biological nitrogen fixation. Matianum Press Consultants, Nairobi, pp 384–400Google Scholar
  65. Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agrofor Syst 59:121–129CrossRefGoogle Scholar
  66. Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91PubMedCrossRefGoogle Scholar
  67. Dupuy N, Willems A, Pot B, Dewettinck D, Vandenbruaene I, Maestrojuan G, Dreyfus B, Kersters K, Collins MD, Gillis M (1994) Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int J Syst Bacteriol 44:461–473PubMedCrossRefGoogle Scholar
  68. Escalante G, Herrera R, Aranguren J (1984) Fijación de nitrógeno en árboles de sombra (Erythrina poeppigiana) en cacaotales del norte de Venezuela. Pesq. Agropec. Bras. 19(edição especial):223–230Google Scholar
  69. FAOStat (2011) Accessed on 29 July 2011
  70. Fassbender HW (1987) Nutrient cycling in agroforestry systems of coffee (Coffea arabica) with shade trees in the Central Experiment of CATIE. In: Beer JW, Fassbender HW, Heuveldop J (eds) Advances in agroforestry research. CATIE, Turrialba, pp 155–172Google Scholar
  71. Fassbender HW, Alpízar L, Heuveldop J, Fölster H, Enríquez G (1988) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) and poro (Erythrina poeppigiana) in Costa Rica III. Cycles of organic matter and nutrients. Agrofor Syst 6:49–62Google Scholar
  72. Fernández M, Meugnier H, Grimont P, Bardin R (1989) Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429CrossRefGoogle Scholar
  73. Fuentes-Ramírez LE, Bustillos-Cristales R, Tapia-Hernández A, Jiménez Salgado T, Wang ET, Martínez-Romero E, Caballero-Mellado J (2001) Novel nitrogen-fixing acetic bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. J Syst Evol Microbiol 51:1305–1314Google Scholar
  74. Fustec J, Lesuffleur F, Mahieu S, Cliquet J-B (2010) Nitrogen rhizodeposition of legumes—a review. Agron Sustain Dev 30:57–66CrossRefGoogle Scholar
  75. Galiana A, Chaumont J, Diem HG, Dommergues Y (1990) Nitrogen-fixing potential of Acacia mangium and Acacia auriculiformis seedlings inoculated with Bradyrhizobium and Rhizobium spp. Biol Fertil Soils 9:261–267CrossRefGoogle Scholar
  76. Galiana A, Gnahoua GM, Chaumont J, Lesueur D, Prin Y, Mallet B (1998) Improvement of nitrogen fixation in Acacia mangium through inoculation with rhizobium. Agrofor Syst 40:297–307CrossRefGoogle Scholar
  77. Gardner IC, Barrueco CR (1999) Mycorrhizal and actinorhizal biotechnology: problems and prospects. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 469–499Google Scholar
  78. Garrity DP, Mercado AR Jr (1994) Nitrogen fixation capacity in the component species of contour hedgerows: how important? Agrofor Syst 27:241–258CrossRefGoogle Scholar
  79. Garrity DP, Akinnefesi FK, Ajayi OC, Weldesemayat SG, Mowo JG, Kalinganire A, Larwanou M, Bayala J (2010) Evergreen agriculture: a robust approach to sustainable food security in Africa. Food Sec 2:197–214CrossRefGoogle Scholar
  80. Gauthier D, Diem HG, Dommergues YR (1985) Assessment of N2 fixation by Casuarina equisetifolia inoculated with Frankia OR02001 using 15N methods. Soil Biol Biochem 17:375–379CrossRefGoogle Scholar
  81. Gehring C, Vlek PLG (2004) Limitations of the 15N natural abundance method for estimating biological nitrogen fixation in Amazonian forest legumes. Basic Appl Ecol 5:567–580CrossRefGoogle Scholar
  82. Giardina CP, Huffman S, Binkley D, Caldwell BA (1995) Alders increase soil phosphorus availability in a Douglas-fir plantation. Can J For Res 25:1652–1657CrossRefGoogle Scholar
  83. Giller KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn. CABI Publishing, WallingfordCrossRefGoogle Scholar
  84. Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174:255–277CrossRefGoogle Scholar
  85. Gokkaya K, Hurd TM, Raynal DJ (2006) Symbiont nitrogenase, alder growth, and soil nitrate response to phosphorus addition in alder (Alnus incana ssp. rugosa) wetlands of the Adirondack Mountains, New York State, USA. Environ Exp Bot 55:97–109CrossRefGoogle Scholar
  86. Gómez Luciano CA (2008) Distribución de raíces finas de Inga edulis y Theobroma cacao en el suelo de un sistema agroforestal orgánico. Proyecto de Graduación, Universidad EARTH, GuácimoGoogle Scholar
  87. Graham P (1992) Stress tolerance in Rhizobium and Bradyrhizobium, and nodulation under adverse soil conditions. Can J Microbiol 38:475–484CrossRefGoogle Scholar
  88. Graham PH, Hubbell DH (1975) Legume Rhizobium relationships in tropical agriculture. In: Doll EC, Mott GO (eds) Tropical forages in livestock production systems. ASA Spec Publ 24:9–21Google Scholar
  89. Grierson PF, Smithson P, Nziguheba G, Radersma S, Comerford NB (2004) Phosphorus dynsmics and mobilization by plants. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems, concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 127–142CrossRefGoogle Scholar
  90. Grossman JM, Sheaffer C, Wyse D, Bucciarelli B, Vance C, Graham PH (2006) An assessment of nodulation and nitrogen fixation in inoculated Inga oerstediana, a nitrogen-fixing tree shading organically grown coffee in Chiapas, Mexico. Soil Biol Biochem 38:769–784CrossRefGoogle Scholar
  91. Gueye M, Ndoye I, Dianda M, Danso SKA, Dreyfus B (1997) Active N2 fixation in several Faidherbia albida provenances. Arid Soil Res Rehabil 11:63–70CrossRefGoogle Scholar
  92. Habte M (1995) Dependency of Cassia siamea on vesicular arbuscular mycorrhizal fungi. J Plant Nutr 18:2191–2198CrossRefGoogle Scholar
  93. Habte M, Turk D (1991) Response of two species of Cassia and Gliricidia sepium to vesicular-arbuscular mycorrhizal infection. Commun Soil Sci Plant Anal 22:1861–1872CrossRefGoogle Scholar
  94. Haggar JP, Tanner EVJ, Beer JW, Kass DCL (1993) Nitrogen dynamics in tropical agroforestry and annual cropping systems. Soil Biol Biochem 25:1363–1378CrossRefGoogle Scholar
  95. Han TX, Wang ET, Wu LJ, Chen WF, Gu JG, Gu CT, Tian CF, Chen WX (2008) Rhizobium multihospitium sp. nov., isolated from multiple legume species native of Xinjiang, China. Int J Syst Evol Microbiol 58:1693–1699PubMedCrossRefGoogle Scholar
  96. Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985CrossRefGoogle Scholar
  97. Harmand J-M (1998) Rôle des espèces ligneuses à croissance rapide dans le fonctionnement biogéochimique de la jachère. Effets sur la restauration de la fertilité des sols ferrugineux tropicaux. (Bassin de la Bénoué au Nord-Cameroun). Thèse de doctorat, Université de Paris VI, France, 213 pGoogle Scholar
  98. Harmand J-M, Njiti CF, Bernhard-Reversat F, Puig H (2004) Aboveground and belowground biomass, productivity and nutrient accumulation in tree improved fallows in the dry tropics of Cameroon. For Ecol Manag 188:249–265CrossRefGoogle Scholar
  99. Harmand J-M, Avila H, Dambrine E, Skiba U, de Miguel S, Renderos RV, Oliver R, Jiménez F, Beer J (2007a) Nitrogen dynamics and soil nitrate retention in a Coffea arabica-Eucalyptus deglupta agroforestry system in Southern Costa Rica. Biogeochemistry 85:125–139CrossRefGoogle Scholar
  100. Harmand J-M, Chaves V, Cannavo P, Ávila H, Dionisio L, Zeller B, Hergoualc’h K, Vaast P, Oliver R, Beer J, Dambrine E (2007b) Nitrogen dynamics (coffee productivity, nitrate leaching and N2O emissions) in Coffea arabica systems in Costa Rica according to edaphic conditions, fertilization and shade management. In: 2nd International Symposium on Multi-Strata Agroforestry Systems with Perennial Crops, CATIE, Turrialba, Costa Rica, 17–21 September 2007Google Scholar
  101. Haselwandter K, Bowen GD (1996) Mycorrhizal relations in trees for agroforestry and land rehabilitation. For Ecol Manag 81:1–17CrossRefGoogle Scholar
  102. He X-H, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants via common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567CrossRefGoogle Scholar
  103. He X-H, Critchley C, Hock N, Bledsoe C (2004) Reciprocal N (15NH4 + or 15NO3 ) transfer between non-N2-fixing Eucalyptus maculata and N2-fixing Casuarina cunninghamiana linked by the ectomycorrhizal fungus Pisolithus sp. New Phytol 163:629–640CrossRefGoogle Scholar
  104. Hergoualc’h K, Skiba U, Harmand J-M, Oliver R (2007) Processes responsible for the nitrous oxide emission from a Costa Rican Andosol under a coffee agroforestry plantation. Biol Fert Soils 43:787–795CrossRefGoogle Scholar
  105. Hergoualc’h K, Skiba U, Harmand J-M, Hénault C (2008) Fluxes of greenhouse gases from andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry 89:329–345CrossRefGoogle Scholar
  106. Hernández M, Benavides JE (1994) Podas estratégicas en cercos vivos de Piñon cubano (Gliricidia sepium) para producción de forraje en la época seca. In: Benavides JE (ed) Arboles y arbustos forrajeros en América Central, vol II., CATIETurrialba, Costa Rica, pp 559–582Google Scholar
  107. Hernández-Lucas I, Segovia L, Martínez-Romero E, Pueppke SG (1995) Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Appl Environ Microbiol 61:2775–2779PubMedGoogle Scholar
  108. Herrera AM, Bedmar EJ, Olivares J (1985) Host specificity of Rhizobium strains isolated from nitrogen-fixing trees and nitrogenase activities of strain GRH2 in symbiosis with Prosopis chilensis. Plant Sci 42:177–182CrossRefGoogle Scholar
  109. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  110. Hobbie EA, Högberg P (2012) Tansley review. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol 196:367–382PubMedCrossRefGoogle Scholar
  111. Högberg P (1997) Tansley Review No. 95. 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  112. Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330PubMedCrossRefGoogle Scholar
  113. Huguet V, Gouy M, Normand P, Zimpfer JF, Fernandez MP (2005) Molecular phylogeny of Myricaceae: a reexamination of host-symbiont specificity. Mol Phyl Evol 34:557–568CrossRefGoogle Scholar
  114. Hunt S, Layzell DB (1993) Gas exchange of legume nodules and the regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511CrossRefGoogle Scholar
  115. Iglesias L, Salas E, Leblanc HA, Nygren P (2011) Response of Theobroma cacao and Inga edulis seedlings to cross-inoculated populations of arbuscular mycorrhizal fungi. Agrofor Syst 83:63–73CrossRefGoogle Scholar
  116. Ingleby K, Fahmer A, Wilson J, Newton AC, Mason PA, Smith RI (2001) Interactions between mycorrhizal colonisation, nodulation and growth of Calliandra calothyrsus seedlings supplied with different concentrations of phosphorus solution. Symbiosis 30:15–28Google Scholar
  117. Ingleby K, Wilson J, Munro RC, Cavers S (2007) Mycorrhizas in agroforestry: spread and sharing of arbuscular mycorrhizal fungi between trees and crops: complementary use of molecular and microscopic approaches. Plant Soil 294:125–136CrossRefGoogle Scholar
  118. Isaac ME, Harmand J-M, Drevon J–J (2011a) Growth and nitrogen acquisition strategies of Acacia senegal seedlings under exponential phosphorus additions. J Plant Physiol 168:776–781PubMedCrossRefGoogle Scholar
  119. Isaac ME, Harmand J-M, Lesueur D, Lelon J (2011b) Tree age and soil phosphorus conditions influence N2-fixation rates and soil N dynamics in natural populations of Acacia Senegal. For Ecol Manag 261:582–588CrossRefGoogle Scholar
  120. Isaac ME, Hinsinger P, Harmand J-M (2012) Nitrogen and phosphorus economy of a legume tree-cereal intercropping system under controlled conditions. Sci Total Environ. doi: 10.1016/j.scitotenv.2011.12.071 PubMedGoogle Scholar
  121. Jalonen R, Nygren P, Sierra J (2009a) Root exudates of a legume tree as a nitrogen source for a tropical fodder grass. Nutr Cycling Agroecosys 85:203–213CrossRefGoogle Scholar
  122. Jalonen R, Nygren P, Sierra J (2009b) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ 32:1366–1376PubMedCrossRefGoogle Scholar
  123. Jalonen R, Timonen S, Sierra J, Nygren P (2012) Arbuscular mycorrhizal symbioses in a cut-and-carry forage production system of legume tree Gliricidia sepium and fodder grass Dichanthium aristatum. Agrofor Syst. doi: 10.1007/s10457-012-9553-1 Google Scholar
  124. Jamann S, Fernández MP, Moiroud A (1992) Genetic diversity of Elaeagnaceae-infective Frankia strains isolated from various soils. Acta Oecologica 13:395–405Google Scholar
  125. Jiménez-Salgado T, Fuentes-Ramírez LE, Tapia-Hernández A, Mascarua-Esparza MA, Martínez-Romero E, Caballero-Mellado J (1997) Coffea arabica L., a new host for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing Acetobacteria. Appl Environ Microbiol 63:3676–3683PubMedGoogle Scholar
  126. Johansen A, Jensen ES (1996) Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem 28:73–81CrossRefGoogle Scholar
  127. Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem 37:413–423CrossRefGoogle Scholar
  128. Kadiata BD, Mulongoy K, Isirimah NO (1997) Influence of pruning frequency of Albizia lebbeck, Gliricidia sepium and Leucaena leucocephala on nodulation and potential nitrogen fixation. Biol Fert Soils 24:255–260CrossRefGoogle Scholar
  129. Kähkölä A-K, Nygren P, Leblanc HA, Pennanen T, Pietikäinen J (2012) Leaf and root litter of a legume tree as nitrogen sources for cacaos with different root colonisation by arbuscular mycorrhizae. Nutr Cycling Agroecosys 92:51–65CrossRefGoogle Scholar
  130. Kang BT, Wilson GF, Sipkens L (1981) Alley cropping maize (Zea mays L.) and leucaena (Leucaena leucocephala Lam.) in Southern Nigeria. Plant Soil 63:165–179CrossRefGoogle Scholar
  131. Kanmegne J, Smaling EMA, Brussaard L, Gansop-Kouomegne A, Boukong A (2006) Nutrient flows in smallholder production systems in the humid forest zone of southern Cameroon. Nutr Cycling Agroecosys 76:233–248CrossRefGoogle Scholar
  132. Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41:1233–1244CrossRefGoogle Scholar
  133. Kass DL (1995) Are nitrogen fixing trees a solution for acid soils? In: Evand DO, Szott LT (eds) Nitrogen fixing trees for acid soils. Nitrogen Fixing Tree Research Reports, Special Issue 1995. Winrock International Institute for Agricultural Development, Morrilton, pp 19–31Google Scholar
  134. Kass DCL, Sylvester-Bradley R, Nygren P (1997) The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas. Soil Biol Biochem 29:775–785CrossRefGoogle Scholar
  135. Khanna PK (1998) Nutrient cycling under mixed-species tree systems in southeast Asia. Agrofor Syst 38:99–120CrossRefGoogle Scholar
  136. Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666CrossRefGoogle Scholar
  137. Kurppa M, Leblanc HA, Nygren P (2010) Detection of nitrogen transfer from N2-fixing shade trees to cacao saplings in 15N labelled soil: ecological and experimental considerations. Agrofor Syst 80:223–239CrossRefGoogle Scholar
  138. Kuyper TW, Cardoso IM, Onguene NA, Murniati, van Noordwijk M (2004) Managing mycorrhiza in tropical multispecies agroecosystems. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems, concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 243–261Google Scholar
  139. Ladha JK, Peoples MB, Garrity DP, Capuno VT, Dart PJ (1993) Estimating dinitrogen fixation of hedgerow vegetation using the nitrogen-15 natural abundance method. Soil Sci Soc Am J 57:732–737CrossRefGoogle Scholar
  140. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient acquisition strategies change with soil age. Trends Ecol Evol 23:95–103PubMedCrossRefGoogle Scholar
  141. Leblanc HA (2004) Evaluation of Inga spp. for dinitrogen fixation and nitrogen release in humid-tropical alley cropping. Ph.D. Thesis, Department of Agronomy, University of Missouri–Columbia, USAGoogle Scholar
  142. Leblanc HA, McGraw RL, Nygren P, Le Roux C (2005) Neotropical legume tree Inga edulis forms N2-fixing symbiosis with fast-growing Bradyrhizobium strains. Plant Soil 275:123–133CrossRefGoogle Scholar
  143. Leblanc HA, McGraw RL, Nygren P (2007) Dinitrogen-fixation by three Neotropical agroforestry tree species under semi-controlled field conditions. Plant Soil 291:99–209CrossRefGoogle Scholar
  144. Lehmann J, Muraoka T, Zech W (2001) Root activity patterns in an Amazonian agroforest with fruit trees determined by 32P, 33P and 15N applications. Agrofor Syst 52:185–197CrossRefGoogle Scholar
  145. Lesueur D, Sarr A (2008) Effects of single and dual inoculation with selected microsymbionts (rhizobia and arbuscular mycorrhizal fungi) on field growth and nitrogen fixation of Calliandra calothyrsus Meissn. Agrofor Syst 73:37–45CrossRefGoogle Scholar
  146. Lie TA, Göktan D, Engin M, Pijenborg J, Anlarsal E (1987) Co-evolution of the legume-Rhizobium association. Plant Soil 100:171–181CrossRefGoogle Scholar
  147. Lindblad P, Russo R (1986) C2H2-reduction by Erythrina poeppigiana in a Costa Rican coffee plantation. Agrofor Syst 4:33–37CrossRefGoogle Scholar
  148. Liu J, Wang ET, Chen WX (2005) Diverse rhizobia associated with woody legumes Wisteria sinensis, Cercis racemosa and Amorpha fruticosa grown in the temperate zone of China. Syst Appl Microbiol 28:465–477PubMedCrossRefGoogle Scholar
  149. Lloret L, Ormeno-Orillo E, Rincón R, Martínez-Romero J, Rogel-Hernández MA, Martínez-Romero E (2007) Ensifer mexicanus sp nov.: a new species nodulating Acacia angustisima (Mill.) Kuntze in Mexico. Syst Appl Microbiol 30:280–290PubMedCrossRefGoogle Scholar
  150. Lortet G, Mear N, Lorquin J, Dreyfus B, de Lajudie P, Rosenberg C, Boivin C (1996) Nod factor thin-layer chromatography profiling as a tool to characterize symbiotic specificity of rhizobial strains: application to Sinorhizobium saheli, S. teranga, and Rhizobium sp. strains isolated from Acacia and Sesbania. Mol Plant-Microbe Interact 9:736–747CrossRefGoogle Scholar
  151. Louche J, Ali MA, Sauvage FX, Cloutier-Hurteau B, Quiquampoix H, Plassard C (2010) Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols. FEMS Microbiol Ecol 73:323–335PubMedGoogle Scholar
  152. Lumini E, Bosco M, Fernandez MP (1996) PCR-RFLP and total DNA homology revealed three related genomic species among broad-host-range Frankia strains. FEMS Microbiol Ecol 21:303–311CrossRefGoogle Scholar
  153. Mafongoya PL, Giller KE, Palm CA (1998) Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor Syst 38:77–97CrossRefGoogle Scholar
  154. Mafongoya PL, Giller KE, Odee S, Gathumbi S, Ndufa SK, Sitompul SM (2004) Benefiting from N2-fixation and managing rhizobia. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems, concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 227–242CrossRefGoogle Scholar
  155. Makatiani ET, Odee DW (2007) Response of Sesbania sesban (L.) Merr. to rhizobial inoculation in an N-deficient soil containing low numbers of effective indigenous rhizobia. Agrofor Syst 70:211–216CrossRefGoogle Scholar
  156. Manjunath A, Habte M (1992) External and internal P requirement of plant species differing in their mycorrhizal dependency. Arid Soil Res Rehabil 6:271–284CrossRefGoogle Scholar
  157. Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685–687CrossRefGoogle Scholar
  158. Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell M, Robertson GP, Santos OC, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65Google Scholar
  159. Martínez L, Caballero-Mellado J, Orozco J, Martínez-Romero E (2003) Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 255:35–47CrossRefGoogle Scholar
  160. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA (1991) Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 41:417–426PubMedCrossRefGoogle Scholar
  161. Maunuksela L, Hahn D, Haahtela K (2000) Effect of freezing of soils on nodulation capacities of total and specific Frankia populations. Symbiosis 29:107–120Google Scholar
  162. Maunuksela L, Zepp K, Koivula T, Zeyer J, Haahtela K, Hahn D (2006) Analysis of Frankia populations in three soils devoid of actinorhizal plants. FEMS Microbiol Ecol 28:11–21CrossRefGoogle Scholar
  163. McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71PubMedCrossRefGoogle Scholar
  164. McKey D (1994) Legumes and nitrogen: the evolutionary ecology of a nitrogen-demanding lifestyle. In: Sprent JI, McKey D (eds) Advances in legume systematics 5: the nitrogen factor. Royal Botanic Gardens, Kew, pp 211–228Google Scholar
  165. Mercado AR Jr, van Noordwijk M, Cadisch G (2011) Positive nitrogen balance of Acacia mangium woodlots as fallows in the Philippines based 15N natural abundance data on N2 fixation. Agrofor Syst 81:221–233CrossRefGoogle Scholar
  166. Minchin FR (1997) Regulation of oxygen diffusion in legume nodules. Soil Biol Biochem 29:881–888CrossRefGoogle Scholar
  167. Minchin FR, Witty JF, Sheehy JE, Müller M (1983) A major error in the acetylene reduction assay: dreceases in nodular nitrogenase activity under assay conditions. J Exp Bot 34:641–649CrossRefGoogle Scholar
  168. Minchin FR, Sheehy JE, Witty JF (1986) Further errors in the acetylene reduction assay. Effects of plan disturbance. J Exp Bot 37:1581–1591CrossRefGoogle Scholar
  169. Moreira FMS, Haukka K, Young JPW (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol Ecol 7:889–895PubMedCrossRefGoogle Scholar
  170. Moreira FMS, Carvalho Y, Gonçalves M, Haukka K, Young JPW, de Faria SM, Franco AA, Cruz LM, Pedrosa FO (2000) Azorhizobium johannense sp. nov. and Sesbania virgata (Caz.) Pers.: a highly specific symbiosis. In: Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Current Plant Sci Biotechnol Agric 38:197Google Scholar
  171. Moyer-Henry KA, Burton JW, Israel DW, Rufty TW (2006) Nitrogen transfer between plants: a 15N natural abundance study with crop and weed species. Plant Soil 282:7–20CrossRefGoogle Scholar
  172. Nair PKR, Buresh RJ, Mugendi DN, Latt CR (1999) Nutrient cycling in tropical agroforestry systems: myths and science. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural system. CRC Press, Boca Raton, pp 1–31Google Scholar
  173. Näsholm T, Kielland K, Ganateg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48PubMedCrossRefGoogle Scholar
  174. Nazaret S, Simonet P, Normand P, Bardin R (1989) Genetic diversity among Frankia isolated from Casuarina nodules. Plant Soil 118:241–247CrossRefGoogle Scholar
  175. Ndoye I, Gueye M, Danso SKA, Dreyfus B (1995) Nitrogen fixation in Faidherbia albida, Acacia raddiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant Soil 172:175–180CrossRefGoogle Scholar
  176. Ndufa JK, Gathumbi SM, Kamiri HW, Giller KE, Cadisch G (2009) Do mixed-species legume fallows provide long-term maize yield benefit compared with monoculture legume fallows? Agron J 101:1352–1362CrossRefGoogle Scholar
  177. Ngom A, Nakagawa Y, Sawada H, Tsukahara J, Wakabayashi S, Uchiumi T, Nuntagij A, Kotepong S, Suzuki A, Higashi S, Abe M (2004) A novel symbiotic nitrogen-fixing member of the Ochrobactrum clade isolated from root nodules of Acacia mangium. J Gen Appl Microbiol 50:17–27PubMedCrossRefGoogle Scholar
  178. Nick G, de Lajudie P, Eardly BD, Suomalainen S, Paulin L, Zhang X, Gillis M, Lindström K (1999) Sinorhizobium arboris sp. nov. and Sinorhizobium kostiense sp. nov., isolated from leguminous trees in Sudan and Kenya. Int J Syst Bacteriol 49:1359–1368PubMedCrossRefGoogle Scholar
  179. Nye PH, Greenland DJ (1960) The soil under shifting cultivation. Commonwealth Bureau of Soils, HarpendenGoogle Scholar
  180. Nygren P (1995) Above-ground nitrogen dynamics following the complete pruning of a nodulated woody legume in humid tropical field conditions. Plant Cell Environ 18:977–988CrossRefGoogle Scholar
  181. Nygren P, Cruz P (1998) Biomass allocation and nodulation of Gliricidia sepium under two cut-and-carry forage production regimes. Agrofor Syst 41:277–292CrossRefGoogle Scholar
  182. Nygren P, Leblanc HA (2009) Natural abundance of 15N in two cacao plantations with legume and non-legume shade trees. Agrofor Syst 76:303–315CrossRefGoogle Scholar
  183. Nygren P, Ramírez C (1995) Production and turnover of N2 fixing nodules in relation to foliage development in periodically pruned Erythrina poeppigiana (Leguminosae) trees. For Ecol Manag 73:59–73CrossRefGoogle Scholar
  184. Nygren P, Cruz P, Domenach AM, Vaillant V, Sierra J (2000) Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume. Tree Physiol 20:41–48PubMedCrossRefGoogle Scholar
  185. Oaks A (1992) A re-evaluation of nitrogen assimilation in roots. Bioscience 42:103–110CrossRefGoogle Scholar
  186. Odee DW, Sutherland JM, Kimiti JM, Sprent JI (1995) Natural rhizobial populations and nodulation status of woody legumes growing in diverse Kenyan conditions. Plant Soil 173:211–224CrossRefGoogle Scholar
  187. Odee DW, Sutherland JM, Makatiani ET, McInroy SG, Sprent JI (1997) Phenotypic characteristics and composition of rhizobia associated with woody legumes growing in diverse Kenyan conditions. Plant Soil 188:65–75CrossRefGoogle Scholar
  188. Odee DW, Haukka K, McInroy SG, Sprent JI, Sutherland JM, Young JPW (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol Biochem 34:801–811CrossRefGoogle Scholar
  189. Oliver R, Njiti CF, Harmand J-M (2000) Analyse de la durabilité de la fertilité acquise suite à des jachères arborées au Nord-Cameroun. Etude et Gestion des Sols 7:287–309Google Scholar
  190. Ong CK, Kho RM, Radersma S (2004) Ecological interactions in multispecies agroecosystems: concepts and rules. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems, concepts and models with multiple plant components. CABI Publishing, Wallingford, pp 1–15CrossRefGoogle Scholar
  191. Oyaizu H, Matsumoto S, Minamisawa K, Gamou T (1993) Distribution of rhizobia in leguminous plants surveyed by phylogenetic identification. J Gen Appl Microbiol 39:339–354CrossRefGoogle Scholar
  192. Palm CA (1995) Contribution of agroforestry trees to nutrient requirements in intercropped plants. Agrofor Syst 30:105–124CrossRefGoogle Scholar
  193. Parrotta JA, Baker DD, Fried M (1996) Changes in dinitrogen fixation in maturing stands of Casuarina equisetifolia and Leucaena leucocephala. Can J For Res 16:1684–1691CrossRefGoogle Scholar
  194. Parsons R, Stanforth A, Raven JA, Sprent JI (1993) Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogen. Plant Cell Environ 16:125–136CrossRefGoogle Scholar
  195. Paschke MW, Dawson JO (1992) The occurrence of Frankia in tropical forest soils of Costa Rica. Plant Soil 142:63–67Google Scholar
  196. Paul EA, Clark FE (1996) Soil microbiology and biochemistry. Academic Press, San DiegoGoogle Scholar
  197. Peoples MB, Palmer B, Lilley DM, Duc LM, Herridge DF (1996) Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant Soil 182:125–137CrossRefGoogle Scholar
  198. Pons TL, Perreijn K, van Kessel C, Werger MJA (2007) Symbiotic nitrogen fixation in a tropical rainforest: 15N natural abundance measurements supported by experimental isotopic enrichment. New Phytol 173:154–167PubMedCrossRefGoogle Scholar
  199. Prin Y, Galiana A, Le Roux C, Méléard B, Razafimaharo V, Ducousso M, Chaix G (2003) Molecular tracing of Bradyrhizobium strains helps to correctly interpret Acacia mangium response to inoculation in a reforestation experiment in Madagascar. Biol Fertil Soils 37:64–69Google Scholar
  200. Raddad EAY, Salih AA, El Fadl MA, Kaarakka V, Luukkanen O (2005) Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant Soil 275:261–269CrossRefGoogle Scholar
  201. Roggy JC, Prévost MF, Garbaye J, Domenach AM (1999a) Nitrogen cycling in the tropical rain forest of French Guiana: comparison of two sites with contrasting soil types using δ15N. J Trop Ecol 15:1–22CrossRefGoogle Scholar
  202. Roggy JC, Prévost MF, Gourbiere F, Casabianca H, Garbaye J, Domenach AM (1999b) Leaf natural 15N abundance and total N concentration as potential indicators of plant nutrition in legumes and pioneer species in a rain forest in French Guiana. Oecologia 120:171–182CrossRefGoogle Scholar
  203. Roggy JC, Moiroud A, Lensi R, Domenach AM (2004) Estimating N transfers between N2-fixing actinorhizal species and the non-N2-fixing Prunus avium under partially controlled conditions. Biol Fertil Soils 39:312–319CrossRefGoogle Scholar
  204. Roskoski JP (1982) Nitrogen fixation in a Mexican coffee plantation. Plant Soil 67:283–291CrossRefGoogle Scholar
  205. Roskoski JP, Van Kessel C (1985) Annual, seasonal and field variation in nitrogen fixing activity by Inga jinicuil, a tropical legume tree. Oikos 44:306–312CrossRefGoogle Scholar
  206. Roupsard O (1997) Ecophysiologie et diversité génétique de Faidherbia albida (Del.) A. Chev. (syn. Acacia albida Del.), un arbre à usages multiples d’Afrique semi-aride : fonctionnement hydrique et efficience d’utilisation de l’eau d’arbres adultes en parc agroforestier et de juvéniles en conditions semi-contrôlées. Tome 1: Partie synthèse. Thèse de doctorat, Université Nancy 1, France, 70 pGoogle Scholar
  207. Roupsard O, Ferhi A, Granier A, Pallo F, Depommier D, Mallet B, Joly HI, Dreyer E (1999) Reverse phenology and dry-season water uptake by Faidherbia albida (Del.) A. Chev. in an agroforestry parkland of Sudanese west Africa. Funct Ecol 13:460–472CrossRefGoogle Scholar
  208. Rouvier C, Nazaret S, Fernandez MP, Picard B, Simonet P, Normand P (1992) rrn and nif intergenic spacers and isoenzyme patterns as tools to characterize Casuarina-infective Frankia strains. Acta Oecologica 13:367–516Google Scholar
  209. Rowe EC, Cadisch G (2002) Implications of heterogeneity on procedures for estimating plant 15N recovery in hedgerow intercrop systems. Agrofor Syst 54:61–70CrossRefGoogle Scholar
  210. Rowe EC, Hairiah K, Giller K, van Noordwijk M, Cadisch G (1999) Testing the safety-net role of hedgerow trees by 15N placement at different soil depths. Agrofor Syst 43:81–93CrossRefGoogle Scholar
  211. Rowe EC, van Noordwijk M, Suprayogo D, Hairiah K, Giller KE, Cadisch G (2001) Root distributions partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercropping systems. Plan Soil 235:167–179CrossRefGoogle Scholar
  212. Salas E, Nygren P, Domenach AM, Berninger F, Ramírez C (2001) Estimating biological N2 fixation by a tropical legume tree using the non-nodulating phenophase as the reference in the 15N natural abundance method. Soil Biol Biochem 33:1859–1868CrossRefGoogle Scholar
  213. Sanginga N, Danso S, Bowen G (1989) Nodulation and growth response of Allocasuarina and Casuarina species to phosphorus fertilization. Plant Soil 118:125–132CrossRefGoogle Scholar
  214. Sanginga N, Danso SKA, Mulongoy K, Ojeifo AA (1994) Persistence and recovery of introduced Rhizobium ten years after inoculation on Leucaena leucocephala grown on an Alfisol in Southwestern Nigeria. Plant Soil 159:199–204CrossRefGoogle Scholar
  215. Sanginga N, Vanlauwe B, Danso SKA (1995) Management of biological N2 fixation in alley cropping systems: estimation and contribution to N balance. Plant Soil 174:119–141CrossRefGoogle Scholar
  216. Santana MBM, Rosand PC (1985) Reciclagem de nutrientes em uma plantação de cacau sombreada com eritrina. In: Proceedings of the IX international cocoa research conference, Togo 1984. Cocoa Producers’ Alliance, Lagos, Nigeria, pp 205–210Google Scholar
  217. Schimann H, Ponton S, Hättenschwiler S, Ferry B, Lensi R, Domenach AM, Roggy J-C (2008) Differing nitrogen use strategies of two tropical rainforest late successional tree species in French Guiana: evidence from 15N natural abundance and microbial activities. Soil Biol Biochem 40:487–494CrossRefGoogle Scholar
  218. Schroth G, Kolbe D, Pity B, Zech W (1995) Searching for criteria for the selection of efficient tree species for fallow improvement, with special reference to carbon and nitrogen. Fertilizer Res 42:297–314CrossRefGoogle Scholar
  219. Schulze E-D, Gebauer G, Ziegler H, Lange OL (1991) Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88:451–455CrossRefGoogle Scholar
  220. Segovia L, Young JP, Martínez-Romero E (1993) Reclassification of American Rhizobium leguminosarum Biovar phaseoli Type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 43:374–377PubMedCrossRefGoogle Scholar
  221. Sellstedt A, Ståhl L, Mattsson U, Jonsson K, Högberg P (1993) Can the 15N dilution technique be used to study N2 fixation in tropical tree symbioses as affected by water deficit? J Exp Bot 44:1749–1755CrossRefGoogle Scholar
  222. Shearer G, Kohl DH (1986) N2 fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756Google Scholar
  223. Shi Y, Ruan J (1992) DNA base composition and homology values in the classification of some Frankia strains. Acta Microbiol Sin 32:133–136Google Scholar
  224. Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38:1893–1903CrossRefGoogle Scholar
  225. Simard SW, Jones MD, Durall DM (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders I (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Heidelberg, pp 33–74Google Scholar
  226. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New YorkGoogle Scholar
  227. Smolander A, Sundman V (1987) Frankia in acid soils of forests devoid of actinorhizal plants. Physiol Plant 70:297–303Google Scholar
  228. Snoeck D, Zapata F, Domenach A-M (2000) Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol Agron Soc Environ 4:95–100Google Scholar
  229. Soto-Pinto L, Anzueto-Martínez M, Mendoza VJ, Jiménez-Ferrer G, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51CrossRefGoogle Scholar
  230. Sprent JI (2009) Legume nodulation, a global perspective. Wiley-Blackwell, OxfordGoogle Scholar
  231. Sprent JI, James EK (2007) Legume evolution: where do nodules and mycorrhizas fit in? Plant Physiol 144:575–581PubMedCrossRefGoogle Scholar
  232. Ståhl L, Nyberg G, Högberg P, Buresh RJ (2002) Effects of planted tree fallows on soil nitrogen dynamics above-ground and root biomass, N2-fixation and subsequent maize crop productivity in Kenya. Plant Soil 243:103–117CrossRefGoogle Scholar
  233. Ståhl L, Högberg P, Sellstedt A, Buresh RJ (2005) Measuring nitrogen fixation by Sesbania sesban planted in fallows using 15N tracer technique in Kenya. Agrofor Syst 65:67–79CrossRefGoogle Scholar
  234. Taiz L, Zeiger E (2006) Plant physiology, 4th edn. Sinauer Associates Inc., SunderlandGoogle Scholar
  235. Thornley JHM, Johnson IR (1990) Plant and crop modelling: a mathematical approach to plant and crop physiology. Clarendon Press, OxfordGoogle Scholar
  236. Tilki F, Fisher RF (1998) Tropical leguminous species for acid soils: studies on plant form and growth in Costa Rica. For Ecol Manag 108:175–192CrossRefGoogle Scholar
  237. Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Sieman E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302CrossRefGoogle Scholar
  238. Toledo I, Lloret L, Martínez-Romero E (2003) Sinorhizobium americanus sp. nov., a new Sinorhizobium species nodulating native Acacia spp. in Mexico. Syst Appl Microbiol 26:54–64PubMedCrossRefGoogle Scholar
  239. Treseder KK, Vitousek PM (2001) Effects of soil nutrient availibility on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954CrossRefGoogle Scholar
  240. Trinick MJ (1982) Host-Rhizobium associations. In: Vincent JM (ed) Nitrogen fixation in legumes. Academic Press, Sydney, pp 111–122Google Scholar
  241. Turk D, Keyser HH (1992) Rhizobia that nodulate tree legumes: specificity of the host for nodulation and effectiveness. Can J Microbiol 38:451–460CrossRefGoogle Scholar
  242. Uddin MB, Khan MASA, Mukul SA, Hossain MK (2008) Effects of inorganic fertilizers on biological nitrogen fixation and seedling growth of some agroforestry trees in Bangladesh. J For Res 19:303–306CrossRefGoogle Scholar
  243. Uliassi DD, Ruess RW (2002) Limitations to symbiotic nitrogen fixation in primary succession on the Tanana River floodplain. Ecology 83:88–103CrossRefGoogle Scholar
  244. Unkovich MJ, Pate JS, Lefroy EC, Arthur DJ (2000) Nitrogen isotope fractionation in the fodder tree legume tagasaste (Chamaecytisus proliferus) and assessment of N2 fixation inputs in deep sandy soils of Western Australia. Aust J Plant Physiol 27:921–929Google Scholar
  245. Unkovich M, Herridge D, Peoples M, Cadisch G, Boddey R, Giller K, Alves B, Chalk P (2008) Measuring plant-associated nitrogen fixation in agricultural systems. ACIAR, Canberra, Australia, 258 p. (accessed 22 June 2012)
  246. Uselman SM, Qualls RG, Thomas RB (1999) A test of a potential short cut in the nitrogen cycle: the role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperature. Plant Soil 210:21–32CrossRefGoogle Scholar
  247. van Kessel C, Roskoski JP (1981) Nodulation and N2 fixation by Inga jinicuil, a woody legume in coffee plantations. II. Effect of soil nutrients on nodulation and N2 fixation. Plant Soil 59:207–215CrossRefGoogle Scholar
  248. van Kessel C, Farrell RE, Roskoski JP, Keane KM (1994) Recycling of the naturally-occurring 15N in an established stand of Leucaena leucocephala. Soil Biol Biochem 26:757–762CrossRefGoogle Scholar
  249. van Noordwijk M, Lawson G, Soumaré A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxley P (eds) Tree–crop interactions: a physiological approach. CAB International, Wallingford, pp 319–364Google Scholar
  250. Vance CP, Heichel GH (1991) Carbon in N2 fixation: limitation and exquisite adaptation. Annu Rev Plant Physiol Mol Biol 42:373–392CrossRefGoogle Scholar
  251. Vanlauwe B, Swift MJ, Merckx R (1996) Soil litter dynamics and N use in a leucaena (Leucaena leucocephala Lam. (De Witt)) alley cropping system in Southwestern Nigeria. Soil Biol Biochem 28:739–749CrossRefGoogle Scholar
  252. Velásquez E, Igual JM, Willems A, Fernández MP, Munoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martínez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evol Microbiol 51:1011–1021CrossRefGoogle Scholar
  253. Vessey JK, Pawlowski K, Bergman B (2004) Root-based N2-fixing symbioses: legumes, actinorhizal plants, Parasponia sp., and cycads. Plant Soil 266:205–230CrossRefGoogle Scholar
  254. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB, Sprent JI (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(58):1–45CrossRefGoogle Scholar
  255. Wang ET, van Berkum P, Beyene D, Sui XH, Dorado O, Chen WX, Martínez-Romero E (1998) Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. Int J Syst Bacteriol 48:687–699PubMedCrossRefGoogle Scholar
  256. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soil and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65PubMedCrossRefGoogle Scholar
  257. Wang Y-P, Houlton BZ, Field CB (2001) A model of biogeochemical cycles of carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase production. Global Biogeochem Cycles 21:GB1018. doi: 10.1029/2006GB002797
  258. Wang ET, Rogel MA, Sui XH, Chen WX, Martínez-Romero E, van Berkum P (2002a) Mesorhizobium amorphae, a rhizobial species that nodulates Amorpha fruticosa, is native to American soils. Arch Microbiol 178:301–305PubMedCrossRefGoogle Scholar
  259. Wang ET, Tan ZY, Willems A, Fernández-López M, Reinhold-Hurek B, Martínez-Romero E (2002b) Sinorhizobium morelense sp. nov., a Leucaena leucocephala-associated bacterium that is highly resistant to multiple antibiotics. Int J Syst Evol Microbiol 52:1687–1693PubMedCrossRefGoogle Scholar
  260. Wang FQ, Wang ET, Lui J, Chen Q, Sui XH, Chen WF, Chen WX (2007) Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 57:1192–1199PubMedCrossRefGoogle Scholar
  261. Weber J, Ducousso M, Yee Tham F, Nourissier-Mountou S, Galiana A, Prin Y, Lee SK (2005) Co-inoculation of Acacia mangium with Glomus intraradices and Bradyrhizobium sp. in aeroponic culture. Biol Fert Soils 41:233–239CrossRefGoogle Scholar
  262. Wichern F, Eberhardt E, Mayer J, Joergensen RG, Müller T (2008) Nitrogen rhizodeposition in agricultural crops: methods, estimates and future prospects. Soil Biol Biochem 40:30–48CrossRefGoogle Scholar
  263. Wolde-Meskel E, Terefework Z, Frostegård A, Lindström K (2005) Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 55:1439–1452PubMedCrossRefGoogle Scholar
  264. Woomer P, Singleton P, Bohlool BB (1988) Ecological indicators of native rhizobia in tropical soils. Appl Environ Microbiol 54:1112–1116PubMedGoogle Scholar
  265. Young JPW, Haukka K (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94CrossRefGoogle Scholar
  266. Zakhia F, de Lajudie P (2001) Taxonomy of Rhizobia. Minireview. Agronomie 21:569–576CrossRefGoogle Scholar
  267. Zerihun A, McKenzie BA, Morton JD (1998) Photosynthate costs associated with the utilization of different nitrogen-forms: influence on the carbon balance of plants and shoot-root biomass partitioning. New Phytol 138:1–11CrossRefGoogle Scholar
  268. Zhang X, Harper R, Karsisto M, Lindström K (1991) Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. Int J Syst Bacteriol 41:104–113CrossRefGoogle Scholar
  269. Zitzer SF, Dawson JO (1992) Soil properties and actinorhizal vagetation influence nodulation of Alnus glutinosa and Elaeagnus angustifolia by Frankia. Plant Soil 140:197–204Google Scholar
  270. Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper no. 89. World Agroforestry Centre, Nairobi, KenyaGoogle Scholar
  271. Zou X, Binkley D, Caldwell BA (1995) Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in contrasting forests. Soil Sci Soc Am J 59:1452–1458CrossRefGoogle Scholar
  272. Zurdo-Piñeiro JL, Velázquez E, Lorite MJ, Brelles-Mariño G, Schröder EC, Bedmar EJ, Mateos PF, Martínez-Molina E (2004) Identification of fast-growing rhizobia nodulating tropical legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Syst Appl Microbiol 27:469–477PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Pekka Nygren
    • 1
    • 5
  • María P. Fernández
    • 2
  • Jean-Michel Harmand
    • 3
  • Humberto A. Leblanc
    • 4
  1. 1.Department of Forest SciencesUniversity of HelsinkiFinland
  2. 2.Ecologie Microbienne, UMR5557, USC 1193Université Lyon1Villeurbanne CedexFrance
  3. 3.CIRAD, UMR Eco&SolsMontpellier Cedex 01France
  4. 4.EARTH UniversitySan JoséCosta Rica
  5. 5.Finnish Society of Forest ScienceVantaaFinland

Personalised recommendations