Nutrient Cycling in Agroecosystems

, Volume 93, Issue 3, pp 337–355 | Cite as

Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat–rapeseed rotation under a humid Mediterranean climate

  • P. Gallejones
  • A. Castellón
  • A. del Prado
  • O. Unamunzaga
  • A. Aizpurua
Original Article


An unbalanced S and/or N fertilization may have low N and S use efficiency together with substantial negative implications for yield, nutrient losses and plant quality parameters. The effect of N and S fertilization and their interactions on N–S balances, on N–S losses and on some plant quality parameters were investigated in a field experiment with a wheat (Triticum aestivum L.)–rapeseed (Brassica napus L.)–wheat rotation (2005–2008). The study was conducted under humid Mediterranean climatic conditions on a potentially S deficient soil. The effects of N (0, 140, 180, 220 kg N ha−1 in wheat; 0, 100, 140, 180, 220 N ha−1 in rapeseed) combined with S fertilizer rates (0, 16 and 32 kg S ha−1 in wheat and 0, 30, 60 kg S ha−1 in rapeseed) were studied. Nitrogen fertilization increased yield by 55 % in wheat and 60 % in rapeseed, N concentration in grain and straw and S concentration in the grain of wheat. However, it led to a reduction in the S concentration of straw and the oil content of the rapeseed seed. The S application did not increase yield but had a positive effect on S concentration in the wheat straw. Glucosinolate concentration, a potentially toxic secondary metabolite in rapeseed, was not influenced by N or S applications. Nitrate leaching tended to increase with N application while sulphate leaching decreased. A net N and S mineralization was observed in each growing season, except for the first year in which a net S immobilization was observed. To make N fertilizer recommendations, the N mineralization from the previous crop residues should be taken into account. For S fertilizer recommendations, N supply is the most important item both from a qualitative point of view (N/S ratio in wheat grain) and an environmental point of view (S leaching).


N leaching S leaching Crop rotation Rapeseed quality N mineralization S mineralization 



This work was supported by the Ministry of Science and Innovation (MICINN-INIA RTA2005-00219-C03-02) and the Department of the Environment, Regional planning, Agriculture and Fisheries of the Basque Government. The authors are grateful to the Department of Analytical Chemistry (Faculty of Pharmacy of the UPV) for the analysis of glucosinolates in the seed of rapeseed. We thank Tom Misselbrook for reviewing the English.


  1. Abad A, Lloveras J, Michelena A (2004) Nitrogen fertilization and foliar urea effects on durum wheat yield and quality and on residual soil nitrate in irrigated Mediterranean conditions. Field Crop Res 87:257–269CrossRefGoogle Scholar
  2. Ahmad G, Jan A, Arif M, Jan MT, Khattak RA (2007) Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J Zhejiang Univ Sci B 8(10):731–737PubMedCrossRefGoogle Scholar
  3. Aizpurua A, Estavillo JM, Castellón A, Alonso A, Besga G, Ortuzar-Iragorri MA (2010) Estimation of optimum nitrogen fertilizer rates in winter wheat in humid Mediterranean conditions, II: economically optimal dose of nitrogen. Commun Soil Sci Plant Anal 41(3):301–307CrossRefGoogle Scholar
  4. Alcoz MM, Hons FM, Haby VA (1993) Nitrogen fertilization timing effect on wheat production, nitrogen uptake efficiency, and residual soil nitrogen. Agron J 85:1198–1203CrossRefGoogle Scholar
  5. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO irrigation and drainage paper 56. Water Resources, Development and Management ServiceGoogle Scholar
  6. Alley MM, Scharf P, Brann DE, Baethgen WE, Hammons JL (2009) Nitrogen management for winter wheat: principles and recommendations. Virginia Cooperative Extension Publication, 424-026Google Scholar
  7. Alpkem (1986) Nitrate + nitrite nitrogen (A303-S170). RFA methodology. Alpkem Corporation, Clackamas, pp 1–10Google Scholar
  8. Alpkem (1987) Ammonia nitrogen (A303-S020). RFA methodology. Alpkem Corporation, Clackamas, pp 1–7Google Scholar
  9. AOAC, Association of Official Analytical Chemists International (1999) Plants. In: Cunniff P (ed) Official methods of analysis of AOAC International, 16th edn. AOAC International, Gaithersburg, MD, USA, p 24, 127Google Scholar
  10. Arregui LM, Quemada M (2006) Drainage and nitrate leaching in a crop rotation under different N-fertilizer strategies: application of capacitance probes. Plant Soil 288:57–69CrossRefGoogle Scholar
  11. Asare E, Scarisbrick DH (1995) Rate of nitrogen and sulphur fertilizers on yield, yield components and seed quality of oilseed rape (Brassica napus L.). Field Crop Res 44:41–46CrossRefGoogle Scholar
  12. AETC, Asociación Española de técnicos cerealistas (2009) Encuesta de calidad de los trigos españoles, cosecha 2008. Subdirección General de Investigación y Tecnología, INIA, MadridGoogle Scholar
  13. Barraclough PB (1989) Root growth, macro-nutrient uptake dynamics and soil fertility requirements of a high-yielding winter oilseed rape crop. Plant Soil 119:59–70CrossRefGoogle Scholar
  14. Bechmann M, Eggestad HO, Vagstad N (1998) Nitrogen balances and leaching in four agricultural catchments in southeastern Norway. Environ Pollut 102:493–499CrossRefGoogle Scholar
  15. Beckie HJ, Brandt SA, Schoenau JJ, Campbell CA, Henry JL, Janzen HH (1997) Nitrogen contribution of field pea in annual cropping systems. 2. Total nitrogen benefit. Can J Plant Sci 77:323–331CrossRefGoogle Scholar
  16. Black CA (1993) Soil fertility evaluation and control. Lewis Publishers, Boca RatonGoogle Scholar
  17. Blake GR, Hartge KH (1986) Bulk density. In: Klute A (ed) Methods of soil analysis. Part 1 Physical and mineralogical methods, 2nd edn. ASA–SSSA, MadisonGoogle Scholar
  18. Blake-Kalff MMA, Hawkesford MJ, Zhao FJ, McGrath SP (2000) Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 225:95–107CrossRefGoogle Scholar
  19. Brennan RF, Mason MG, Walton GH (2000) Effect of nitrogen fertilizer on the concentrations of oil and protein in Canola (Brassica napus) seed. J Plant Nutr 23(3):339–348CrossRefGoogle Scholar
  20. Campbell GS (1985) Soil physics with BASIC: transport models for soil-plant systems. Elsevier, AmsterdamGoogle Scholar
  21. Campbell CA, Zentner RP, Basnyat P, De Jong R, Lemke R, Desjardins R (2008) Nitrogen mineralization under summer fallow and continuous wheat in the semiarid Canadian prairie. Can J Soil Sci 88:681–696CrossRefGoogle Scholar
  22. Casado H, Encinas D, Calzada I (1999) Depósito contaminante en la C.A.P.V. y sus posibles efectos sobre el Pinus radiata D. Don. Departamento de ordenación del territorio, vivienda y medio ambiente. Gobierno VascoGoogle Scholar
  23. CEC (1991) Council directive of 12th December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources (91/676/EEC). Off J Eur Commun (30/12/91 L135/1-8)Google Scholar
  24. Cecotti SP (1996) Plant nutrient sulphur—a review of nutrient balance, environmental impact and fertilizers. Nutr Cycl Agroecosyst 43:117–125Google Scholar
  25. Christen O (2001) Effects of different preceding crops on the growth, yield components and grain yield of winter wheat and winter barley. In: Proceedings of 6th agronomy conference 1992. Australian Society of AgronomyGoogle Scholar
  26. BOE n 45 viernes 21 de febrero de (2003) Ministerio de la Presidencia. Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humanoGoogle Scholar
  27. Delogu G, Cattivelli L, Pecchioni N, De Falcis D, Maggiore T, Stanca AM (1998) Uptake and agronomic efficiency of nitrogen in winter barley and winter wheat. Eur J Agron 9:11–20CrossRefGoogle Scholar
  28. Eriksen J (1997) Sulphur cycling in Danish agricultural soils: inorganic sulphate dynamics and plant uptake. Soil Biol Biochem 29:1379–1385CrossRefGoogle Scholar
  29. Eriksen J, Askegaard M (2000) Sulphate leaching in an organic crop rotation on sandy soil in Denmark. Agric Ecosyst Environ 78:107–114CrossRefGoogle Scholar
  30. Eriksen J, Olesen JE, Askegaard M (2002) Sulphate leaching and sulphur balances of an organic cereal crop rotation on three Danish soils. Eur J Agron 17:1–9CrossRefGoogle Scholar
  31. Fismes J, Vong PC, Guckert A, Frossard E (2000) Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. Eur J Agron 12:127–141CrossRefGoogle Scholar
  32. Fitzgerald MA, David Ugalde T, Anderson JW (1999) Sulphur nutrition changes the sources of S in vegetative tissues of wheat during generative growth. J Exp Bot 50(333):499–508Google Scholar
  33. Flæte NES, Hollungb K, Ruudc L, Sogna T, Færgestadb EM, Skarpeidb HJ, Magnusb EM, Uhlena AK (2005) Combined nitrogen and sulphur fertilisation and its effect on wheat quality and protein composition measured by SE-FPLC and proteomics. J Cereal Sci 41:357–369CrossRefGoogle Scholar
  34. Flowers MD, Lutcher LK, Corp MK, Brown B (2007) Managing nitrogen for yield and protein in hard wheat. Oregon State University, Extension Service. FS 335Google Scholar
  35. Gan YT, Campbell CA, Janzen HH, Lemke RL, Basnyat P, McDonald CL (2010) Nitrogen accumulation in plant tissues and roots and N mineralization under oilseeds, pulses, and spring wheat. Plant Soil 332:451–461CrossRefGoogle Scholar
  36. Gan YT, Liang BC, Liu LP, Wang XY, McDonald CL (2011) C:N ratios and carbon distribution profile across rooting zones in oilseed and pulse crops. Crop Pasture Sci 62:496–503CrossRefGoogle Scholar
  37. Gee GW, Bauder JW (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis: part 1. Physical and mineralogical methods, 2nd edn. SSSA, Madison, pp 383–411Google Scholar
  38. GV-EJ, Gobierno Vasco-Eusko Jaurlaritza (1999) Decreto 390/1998 por el que se dictan normas para la declaración de Zonas Vulnerables a la contaminación de las aguas por los nitratos procedentes de la actividad agraria y se aprueba el Código de Buenas Prácticas Agrarias de la Comunidad Autónoma del País Vasco. BOPV 18:1448–1474Google Scholar
  39. Goh KM, Pamidi J (2004) Effects of cultivation and long-term superphosphate applications on pasture soil sulphur mineralisation and availability in the field. Plant Soil 264:299–312CrossRefGoogle Scholar
  40. Goñi J, Irañeta J, Sexmilo JR, Lafarga A (2008) La colza en Navarra. Navarra Agraria 170:5–10Google Scholar
  41. Györi Z (2005) Sulphur content of winter wheat grain in long term field experiments. Commun Soil Sci Plant Anal 36:373–382CrossRefGoogle Scholar
  42. ITGA, Instituto Técnico para la Gestión Agrícola de Navarra (2005) Cultivos extensivos, campaña 2004. Informe Técnico Rep. 3. Instituto Técnico y de Gestión Agrícola, Villava, SpainGoogle Scholar
  43. ITGA, Instituto Técnico para la Gestión Agrícola de Navarra (2009) Manual del cultivo de la colza de otoño en EspañaGoogle Scholar
  44. IUSS Grupo de Trabajo WRB (2007) Base Referencial Mundial del Recurso Suelo. Primera actualización 2007. Informes sobre Recursos Mundiales de Suelos No. 103. FAO, RomaGoogle Scholar
  45. Jackson G (2000) Effect of nitrogen and sulphur on canola yield and nutrient uptake. Agron J 92(4):644–649CrossRefGoogle Scholar
  46. Janzen HH, Bettany JR (1984) Sulphur nutrition of rapeseed: I. influence of fertilizer nitrogen and sulfur rates. Soil Sci Soc Am J 48:100–107CrossRefGoogle Scholar
  47. Janzen HH, Ellert BH (1998) Sulphur dynamics in cultivated temperate agroecosystems. In: Maynard DG (ed) Sulphur in the environment. Marcel Dekker, New York, pp 11–43Google Scholar
  48. Järvan M, Edesi L, Adamson A, Lukme M, Akk A (2008) The effect of sulphur fertilization on yield, quality of protein and baking properties of winter wheat. Agron Res 6(2):459–469Google Scholar
  49. Johnson CM, Ulrich A (1959) Analytical methods for use in plant analysis. University of California Agricultural Experiment Station, Berkeley. Bulletin 766Google Scholar
  50. Kirchmann H, Pichlmayer F, Gerzabeck MH (1996) Sulfur balances and sulphur-34 abundance in a long-term fertilizer experiment. Soil Sci Soc Am J 60:174–178CrossRefGoogle Scholar
  51. Kirkegaard JA, Gardner PA, Angus JF, Koetz E (1996) Effect of Brassica break crops on the growth and yield of wheat. Aust J Agric Res 45(3):529–545CrossRefGoogle Scholar
  52. Kirkegaard JA, Hocking PJ, Angus JF, Howe GN, Gardner PA (1997) Comparison of canola, Indian mustard and Linola in two contrasting environments. II. Break-crop and nitrogen effects on subsequent wheat crops. Field Crop Res 52:179–191CrossRefGoogle Scholar
  53. Kübler E, Hobelsberger A (1984) Beeinflussung von Ertrag Inhaltsstoffen und Nährstoffeinträgen bei Zuckerrüben, Winterweizen und Sommergerste durch gestaffelte N-Gaben während der neunjährigen Versuchsdauer des internationalen Stickstoffdüngungsversuches, Standort Ihinger Hof, II Winterweizen. Kali-Briefe 17:125–145Google Scholar
  54. Kumar K, Goh M (2000) Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv Agron 68:197–318CrossRefGoogle Scholar
  55. Lancashire PD, Bleiholder H, Van Der Boom T, Langelüddeke P, Stauss R, Weber E, Witzenberger A (1991) A uniform decimal code for growth stages of crops and weeds. Ann Appl Biol 119:561–601CrossRefGoogle Scholar
  56. Lewandowski I, Kauter D (2003) The influence of nitrogen fertilizer on the yield and combustion quality of whole grain crops for solid fuel use. Ind Crop Prod 17:103–117CrossRefGoogle Scholar
  57. Lohaus G, Moellers C (2000) Phloem transport of amino acids in two Brassica napus L. genotypes and one B. carinata genotype in relation to their seed protein content. Planta 211:833–840PubMedCrossRefGoogle Scholar
  58. Lord EI, Shepherd MA (1993) Developments in the use of ceramic cups for measuring nitrate leaching. J Soil Sci 24:435–449Google Scholar
  59. MAPA (1994) Métodos oficiales de análisis. Tomo III. Ministerio de Agricultura, Pesca y Alimentación. MadridGoogle Scholar
  60. Marschner H (1986) Uptake of mineral elements by leaves and other aerial plant parts. In: Marschner H (ed) Mineral nutrition in higher plants, pp 103–114Google Scholar
  61. Maynard DG, Stewart JWB, Bettany JR (1983) Sulphur and nitrogen mineralization in soils compared using two incubation techniques. Soil Biol Biochem 15:251–256CrossRefGoogle Scholar
  62. McEwen J, Darby RJ, Hewitt MV, Yeoman DP (1989) Effects of field beans, fallow, lupins, oats, oilseed rape, peas, ryegrass, sunflowers and wheat on nitrogen residues in the soil and on the growth of a subsequent wheat crop. J Agric Sci 115:209–219CrossRefGoogle Scholar
  63. McGrath SP, Zhao FJ (1996) Sulphur uptake, yield response and the interactions between N and S in winter oilseed rape (Brassica napus). J Agric Sci 126:53–62CrossRefGoogle Scholar
  64. Millán S, Sampedro MC, Gallejones P, Castellón A, Ibargoitia ML, Goicolea MA, Barrio JR (2009) Identification and quantification of glucosinolates in rapeseed using liquid chromatography–ion trap mass spectrometry. Anal Bioanal Chem 394:1661–1669PubMedCrossRefGoogle Scholar
  65. Monaghan JM, Scrimgeour CM, Stein WM, Zhao FJ, Evans EJ (1999) Sulphur accumulation and redistribution in wheat (Triticum aestivum): a study using stable sulphur isotope ratios as a tracer system. Plant Cell Environ 22:831–839CrossRefGoogle Scholar
  66. Ortuzar MA (2007) Desarrollo de un sistema de fertilización nitrogenada racional en trigo blando de invierno bajo condiciones de clima mediterráneo húmedo. Doctoral thesis, Universidad del País Vasco, LeioaGoogle Scholar
  67. Ortuzar MA, Castellón A, Alonso A, Besga G, Estavillo JM, Aizpurua A (2010) Estimation of optimum nitrogen fertilizer rates in winter wheat in humid mediterranean conditions. I. Selection of yield and protein response models. Commun Soil Sci Plant Anal 41(19):2293–2300CrossRefGoogle Scholar
  68. Ortuzar-Iragorri MA, Aizpurua A, Castellón A, Alonso A, Unamunzaga O, Azkorra Z, Estavillo JM (2006) Balances de nitrógeno en cultivo de trigo de invierno en el País Vasco. Monografías INIA: Serie agrícola no. 21:29–47Google Scholar
  69. Papadakis J (1966) Climates of the world and their agricultural potentialities. Edited by the author. Buenos AiresGoogle Scholar
  70. Quemada M (2006) Balance de nitrógeno en sistemas de cultivo de cereal de invierno y de maíz en varias regiones españolas. Monografías INIA, serie agrícola no. 21Google Scholar
  71. Randall PJ, Wrigley CW (1986) Effects of sulfur supply on yield, composition, and quality of grain from cereals, oilseeds, and legumes. Adv Cereal Sci Technol 8:171–206Google Scholar
  72. Randall PJ, Spencer K, Freney JR (1981) Sulfur and nitrogen fertilizer effects on wheat. I Concentrations of sulfur and nitrogen and the nitrogen to sulfur ratio in grain, in relation to the yield response. Aust J Agric Res 32:203–212CrossRefGoogle Scholar
  73. Rathke GW, Christen O, Diepenbrock W (2005) Effects of nitrogen source and rate on productivity and quality of winter oilseed rape (Brassica napus L.) grown in different crop rotations. Field Crop Res 94(2–3):103–113CrossRefGoogle Scholar
  74. Rathke GW, Behrens T, Diepenbrock W (2006) Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): a review. Agric Ecosyst Environ 117:80–108CrossRefGoogle Scholar
  75. Rieger S, Richner W, Streit B, Frossard E, Liedgens M (2008) Growth, yield, and yield components of winter wheat and the effects of tillage intensity, preceding crops, and fertilisation. Eur J Agron 28:405–411CrossRefGoogle Scholar
  76. Rossato L, Lainé P, Ourry A (2001) Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J Exp Bot 52:1655–1663PubMedCrossRefGoogle Scholar
  77. Sahota TS (2006) Importance of sulphur in crop production. Northwest Link, 10–12 SeptGoogle Scholar
  78. Salvagiotti F, Castellarín JM, Miralles DJ, Pedrol HM (2009) Sulfur fertilization improves nitrogen use efficiency in wheat by increasing nitrogen uptake. Field Crop Res 113(2):170–177CrossRefGoogle Scholar
  79. SAS Institute (2004) SAS version 9.1. SAS Institute, CaryGoogle Scholar
  80. Shepherd MA, Sylvester-Bradley P (1996) Effect of nitrogen fertilizer applied to winter oilseed rape (Brassica napus) on soil mineral nitrogen after harvest and on the response of a succeeding crop of winter wheat to nitrogen fertilizer. J Agric Sci 126:63–74CrossRefGoogle Scholar
  81. Sieling K, Kage H (2006) N balance as an indicator of N leaching in an oilseed rape–winter wheat–winter barley rotation. Agric Ecosyst Environ 115:261–269CrossRefGoogle Scholar
  82. Sieling K, Kage H (2010) Efficient N management using winter oilseed rape. A review. Agron Sustain Dev 30:271–279CrossRefGoogle Scholar
  83. Sieling K, Günther-Borstel O, Teebken T, Hanus H (1999) Soil mineral N and N net mineralization during autumn and winter under an oilseed rape–winter wheat–winter barley rotation in different crop management systems. J Agric Sci 132:127–137CrossRefGoogle Scholar
  84. Sieling K, Brase T, Svib V (2006) Residual effects of different N fertilizer treatments on growth, N uptake and yield of oilseed rape, wheat and barley. Eur J Agron 25:40–48CrossRefGoogle Scholar
  85. SSS, Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA-Natural Resources Conservation Service, Washington, DCGoogle Scholar
  86. Stout BA (1990) Handbook of energy for world agriculture. Elsevier, LondonCrossRefGoogle Scholar
  87. Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753PubMedCrossRefGoogle Scholar
  88. Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–38CrossRefGoogle Scholar
  89. Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci Soc Am Proc 29:677–678CrossRefGoogle Scholar
  90. Withers PJA, O’Donnell FM (1994) The response of double-low winter oilseed rape to fertiliser sulphur. J Sci Food Agric 63:29–37Google Scholar
  91. Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421CrossRefGoogle Scholar
  92. Zasoski RJ, Burau RG (1977) A rapid nitric-perchloric acid digestion method for multielement tissue analysis. Commun Soil Sci Plant Anal 8(5):425–436CrossRefGoogle Scholar
  93. Zhao FJ, McGrath SP (1994) Comparison of sulphur uptake by oilseed rape and the soil sulphur status of two adjacent fields with different soil series. Soil Use Manag 10:47–50CrossRefGoogle Scholar
  94. Zhao FJ, Withers PJA, Evans EJ, Monaghan J, Salmon SE, Shewry PR, McGrath SP (1997) Sulphur nutrition: an important factor for the quality of wheat and rapeseed. Soil Sci Plant Nutr 43:1137–1142CrossRefGoogle Scholar
  95. Zhao FJ, Salmon SE, Withers PJA, Monaghan JM, Evans EJ, Shewry PR, McGrath SP (1999a) Variation in the breadmaking quality and rheological properties of wheat in relation to sulphur nutrition under field conditions. J Cereal Sci 30:19–31CrossRefGoogle Scholar
  96. Zhao FJ, Hawkesford MJ, McGrath SP (1999b) Sulphur assimilation and effects on yield and quality of wheat. J Cereal Sci 30:1–17CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • P. Gallejones
    • 1
    • 2
  • A. Castellón
    • 1
  • A. del Prado
    • 2
  • O. Unamunzaga
    • 1
  • A. Aizpurua
    • 1
  1. 1.Basque Institute for Agricultural Research and DevelopmentNEIKER-TecnaliaDerioSpain
  2. 2.Basque Centre for Climate Change (BC3)BilbaoSpain

Personalised recommendations