Advertisement

Nutrient Cycling in Agroecosystems

, Volume 92, Issue 1, pp 51–65 | Cite as

Leaf and root litter of a legume tree as nitrogen sources for cacaos with different root colonisation by arbuscular mycorrhizae

  • Anna-Kaisa Kähkölä
  • Pekka NygrenEmail author
  • Humberto A. Leblanc
  • Taina Pennanen
  • Janna Pietikäinen
Original Article

Abstract

Traditionally cacao (Theobroma cacao L.) is cultivated under legume shade trees, which produce N-rich litter that improves soil organic matter content, microbial activity, and recycles N to the crop. Arbuscular mycorrhiza forming fungi (AMF) are known to play an important role in plant nutrient uptake, yet their role in plant N uptake from organic residues in tropical agroforestry systems is not clear. We studied root and leaf litter of the legume shade tree Inga edulis Mart. as a source of N for cacao and the importance of AMF colonisation in the uptake of litter N under controlled conditions. Leaf and root litter of I. edulis enriched with 15N was added to cacao pots filled with field soil. Half of the cacao saplings were AMF-inoculated and the soil of non-inoculated saplings was treated with fungicide to suppress AMF. During the 10-week experiment, young cacao leaves were sampled for 15N analyses and at the end of the experiment whole plants were harvested. Microbial populations in the soil were determined using phospholipid fatty acid (PLFA) analysis, and AMF structures in the roots were quantified. Fungicide treatment decreased AMF structures in roots and increased bacterial populations, but did not affect the decomposition rate of either litter type. Inoculated and non-inoculated cacao saplings used 2.6 and 2.1%, respectively, of N added to the pots in leaf litter and 12.1 and 7.1% of N available in root litter indicating that root litter of I. edulis may be a more efficient N source than leaf litter for cacao. Although the fungicide treatment did not completely suppress AMF in non-inoculated pots, it created sufficient contrast in root AMF colonisation for concluding that AMF significantly enhanced cacao N use from both litter types. The role of root litter of shade trees as a N source in agroforestry should not be neglected.

Keywords

Theobroma cacao Inga edulis Agroforestry Litter quality Mycorrhizal inoculation 15N-labelling 

Notes

Acknowledgments

We thank Ms Riina Jalonen for assistance in designing and setting up the experiment, Mr Ricardo Palacios for logistics with the greenhouse work, Dr. Hannu Fritze for help with the PLFA analyses, and Ms Pirjo Kähkölä for language corrections. The study was funded by the Academy of Finland (grant 129166).

References

  1. Alexander IJ (1989) Mycorrhizas in tropical forests. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford, UK, pp 169–188Google Scholar
  2. Almeida AAF, Valle RR (2007) Ecophysiology of the cacao tree. Braz J Plant Physiol 19(4):425–448. doi: 10.1590/S1677-04202007000400011 CrossRefGoogle Scholar
  3. Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M. pubescens and Paepalanthus sp. Mycorrhiza 14(4):221–228. doi: 10.1007/s00572-003-0259-0 PubMedCrossRefGoogle Scholar
  4. Beer J, Muschler R, Kass D, Somarriba E (1998) Shade management in coffee and cacao plantations. Agrofor Syst 38(1–3):139–164. doi: 10.1023/A:1005956528316 Google Scholar
  5. Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84. doi: 10.1016/j.agee.2006.03.011 CrossRefGoogle Scholar
  6. Chintu R, Zaharah AR (2003) Nitrogen uptake of maize (Zea mays L.) from isotope-labeled biomass of Paraserianthes falcataria grown under controlled conditions. Agrofor Syst 57(2):101–107. doi: 10.1023/A:1023940602481 CrossRefGoogle Scholar
  7. Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.). Biol Fert Soils 15(4):253–258. doi: 10.1007/BF00337209 CrossRefGoogle Scholar
  8. Chulan HA, Ragu P (1986) Growth response of Theobroma cacao L. seedlings to inoculation with vesicular-arbuscular mycorrhizal fungi. Plant Soil 96(2):279–285. doi: 10.1007/BF02374771 CrossRefGoogle Scholar
  9. Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17(5):375–393. doi: 10.1007/s00572-007-0130-9 PubMedCrossRefGoogle Scholar
  10. Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agrofor Syst 59:121–129. doi: 10.1023/A:1026387711571 CrossRefGoogle Scholar
  11. FAOStat (2011) http://www.fao.org/corp/statistics/en/. Accessed 29 July 2011
  12. Federle TW (1986) Microbial distribution in soil -new techniques. In: Megusar F, Gantar M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, Ljubljana, pp 493–498Google Scholar
  13. Fitter AH, Helgason T, Hodge A (2011) Nutritional exchanges in the arbuscular mycorrhizal symbiosis: implications for sustainable agriculture. Fungal Biol Rev. doi: 10.1016/j.fbr.2011.01.002 Google Scholar
  14. Frostegård Å, Bååth E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22(1–2):59–65. doi: 10.1007/BF00384433 CrossRefGoogle Scholar
  15. Frostegård Å, Tunlid A, Bååth E (1993) Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl Environ Microbiol 59(11):3605–3617PubMedGoogle Scholar
  16. Frostegård Å, Tunlid A, Bååth E (1996) Changes in microbial community structure during long-term incubation in two soils experimentally contaminated with metals. Soil Biol Biochem 28(1):55–63. doi: 10.1016/0038-0717(95)00100-X CrossRefGoogle Scholar
  17. Gobert A, Plassard C (2008) The beneficial effect of mycorrhizae on N utilization by the host-plant: myth or reality? In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 209–240. doi:  10.1007/978-3-540-78826-3_11
  18. Gómez Luciano CA (2008) Distribución de raicés finas de Inga edulis y Theobroma cacao en el suelo de un sistema agroforestal orgánico. Proyecto de graduación. Universidad EARTH, Costa RicaGoogle Scholar
  19. Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. doi: 10.1038/nature03610 PubMedCrossRefGoogle Scholar
  20. Haggar JP, Tanner EVJ, Beer JW, Kass DCL (1993) Nitrogen dynamics in tropical agroforestry and annual cropping systems. Soil Biol Biochem 25(10):1363–1378. doi: 10.1016/0038-0717(93)90051-C CrossRefGoogle Scholar
  21. Hands MR (1998) The use of Inga in the acid soils of the rainforest zone: Alley-cropping sustainability and soil-regeneration. In: Pennington TD, Fernandez ECM (eds) The genus Inga utilization. The Royal Botanic Gardens Kew, London, pp 53–86Google Scholar
  22. He X, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22(6):531–567. doi: 10.1080/713608315 CrossRefGoogle Scholar
  23. Hodge A (2003) N capture by Plantago lanceolata and Brassica napus from organic matter: the influence of spatial dispersion, plant competition and an arbuscular mycorrhizal fungus. J Exp Bot 54(391):2331–2342. doi: 10.1093/jxb/erg249 PubMedCrossRefGoogle Scholar
  24. Hodge A, Campbell D, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299. doi: 10.1038/35095041 PubMedCrossRefGoogle Scholar
  25. Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21(10):548–554. doi: 10.1016/j.tree.2006.06.004 PubMedCrossRefGoogle Scholar
  26. Iglesias L, Salas E, Leblanc HA, Nygren P (2011) Response of Theobroma cacao and Inga edulis seedlings to cross-inoculated populations of arbuscular mycorrhizal fungi. Agrofor Syst 83(1):63–73. doi: 10/1007/s10457-011-9400-9 CrossRefGoogle Scholar
  27. Jalonen R, Nygren P, Sierra J (2009) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ 32(10):1366–1376. doi: 10.1111/j.1365-3040.2009.02004.x PubMedCrossRefGoogle Scholar
  28. Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30(3):310–322. doi: 10.1111/j.1365-3040.2006.01617.x PubMedCrossRefGoogle Scholar
  29. Kahiluoto H, Vestberg M (2000) Creation of a non-mycorrhizal control for a bioassay of AM effectiveness 2. Benomyl application and soil sampling time. Mycorrhiza 9(5):259–270. doi: 10.1007/PL00009990 CrossRefGoogle Scholar
  30. Kahiluoto H, Ketoja E, Vestberg M (2000) Creation of a non-mycorrhizal control for bioassay of AM effectiveness 1. Comparison of methods. Mycorrhiza 9:241–258. doi: 10.1007/PL00009989 CrossRefGoogle Scholar
  31. Kass DCL, Sylvester-Bradley R, Nygren P (1997) The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas. Soil Biol Biochem 29:775–785. doi: 10.1016/S0038-0717(96)00269-6 CrossRefGoogle Scholar
  32. Kiers ET, Lovelock CE, Krueger EL, Herre EA (2000) Differential effects of tropical arbuscular mycorrhizal fungal inocula on root colonization and tree seedling growth: implications for tropical forest diversity. Ecol Lett 3:106–113CrossRefGoogle Scholar
  33. Leblanc HA, Nygren P, McGraw R (2006) Green mulch decomposition and nitrogen release from leaves of two Inga spp. in an organic alley-cropping practise in the humid tropics. Soil Biol Biochem 38(2):349–358. doi: 10.1016/j.soilbio.2005.05.012 CrossRefGoogle Scholar
  34. Leigh J, Hodge A, Fitter AH (2009) Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol 181(1):199–207. doi: 10.1111/j.1469-8137.2008.02630.x PubMedCrossRefGoogle Scholar
  35. León J (1998) Inga as shade tree for coffee, cacao and tea: historical aspects and present day utilization. In: Pennington TD, Fernandez ECM (eds) The genus Inga utilization. The Royal Botanic Gardens Kew, London, pp 53–86Google Scholar
  36. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115(3):495–501CrossRefGoogle Scholar
  37. Muleta D, Assefa F, Nemomissa S (2008) Distribution of arbuscular mycorrhizal fungi spores in soils of smallholder agroforestry and monocultural coffee systems in southwestern Ethiopia. Biol Fert Soils 44(4):653–659. doi: 10.1007/s00374-007-0261-3 CrossRefGoogle Scholar
  38. Muñoz F, Beer J (2001) Fine root dynamics of shaded cacao plantations in Costa Rica. Agrofor Sys 51:119–130. doi: 10.1023/A:1010651203815 CrossRefGoogle Scholar
  39. Nair PKR, Buresh RJ, Mugendi DN, Latt CR (1999) Nutrient cycling in tropical agroforestry systems: Myths and science. In: Buck LE, Lassoie JP, Fernandes ECM (eds) Agroforestry in sustainable agricultural systems. CRC Press, Boca Raton, pp 1–31Google Scholar
  40. Nichols PD, Stulp BK, Jones JG, White DC (1986) Comparison of fatty acid content and DNA homology of the filamentous gliding bacteria Vitreoscilla, Flexibacter, Filibacter. Arch Microbiol 146:1–6CrossRefGoogle Scholar
  41. Nye PH, Greenland DJ (1960) The soil under shifting cultivation. Commonwealth Bureau of Soils, HarpendenGoogle Scholar
  42. Nygren P, Leblanc H (2009) Natural abundance of 15N in two cacao plantations with legume and non-legume shade trees. Agrofor Syst 76(2):303–315. doi: 10.1007/s10457-008-9160-3 CrossRefGoogle Scholar
  43. Olsson PA (1999) Mini review: signature fatty acids provide toosl for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol Ecol 29:303–310CrossRefGoogle Scholar
  44. Olsson PA, Bååth E, Jakobsen I, Söderström B (1995) The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol Res 99(5):623–629. doi: 10.1016/S0953-7562(09)80723-5 CrossRefGoogle Scholar
  45. Olsson PA, Bååth E, Jakobsen I (1997) Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl Environ Microb 63(9):3531–3538Google Scholar
  46. Palm CA, Gachengo CN, Delve RJ, Cadisch G, Giller KE (2001) Organic inputs for soil fertility management in tropical agroecosystems: application of an organic resource database. Agric Ecosyst Environ 83(1–2):27–42. doi: 10.1016/S0167-8809(00)00267-X CrossRefGoogle Scholar
  47. Pennanen T, Liski J, Bååth E, Kitunen V, Uotila J, Westman CJ, Fritze H (1999) Structure of the microbial communities in coniferous forest soils in relation to site fertility and stand development stage. Microb Ecol 38(2):168–179. doi: 10.1007/s002489900161 PubMedCrossRefGoogle Scholar
  48. Persson J, Högberg P, Ekblad A, Högberg MN, Nordgren A, Näsholm T (2003) Nitrogen acquisition from inorganic and organic sources by boreal forest plants in the field. Oecologia 137:252–257. doi: 10.1007/s00442-003-1334-0 PubMedCrossRefGoogle Scholar
  49. Phillips JM, Hayman DS (1970) Improved procedures for cleaning roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  50. Reynolds L, Hartley AE, Vogelsang KM, Bever JD, Schultz PA (2005) Arbuscular mycorrhizal fungi do not enhance nitrogen acquisition and growth of old-field perennials under low nitrogen supply in glasshouse culture. New Phytol 167(3):869–880. doi: 10.1111/j.1469-8137.2005.01455.x PubMedCrossRefGoogle Scholar
  51. Sancho F, Mata R, Molina E, Salas R (1989) Estudio de suelos, finca de la Escuela de Agricultura de la Región Tropical Húmeda, Guácimo, Provincia de Limón. Universidad EARTH, Guácimo, p 151Google Scholar
  52. Shearer G, Kohl DH (1986) N2-fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13(6):699–756. doi: 10.1071/PP9860699 Google Scholar
  53. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San DiegoGoogle Scholar
  54. Vanlauwe B, Swift MJ, Merckx R (1996) Soil litter dynamics and N use in a leucaena (Leucaena leucocephala Lam. (De Witt)) alley cropping system in Southwestern Nigeria. Soil Biol Biochem 28(6):739–749. doi: 10.1016/0038-0717(95)00187-5 CrossRefGoogle Scholar
  55. Vitousek PM (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65:285–298. doi: 10.2307/1939481 CrossRefGoogle Scholar
  56. World cocoa Foundation (2010) Cocoa Market Update (May 2010). http://www.worldcocoafoundation.org/learn-about-cocoa/cocoa-market.html. Accessed 12 Aug 2011
  57. Zamora VN, Pennington TD (2001) Guabas y Cuajiniquiles de Costa Rica (Inga spp.). Instituto Nacional de Biodiversidad, HerediaGoogle Scholar
  58. Zomer RJ, Trabucco A, Coe R, Place F (2009) Trees on farm: analysis of global extent and geographical patterns of agroforestry. ICRAF Working Paper no. 89. World Agroforestry Centre, NairobiGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Anna-Kaisa Kähkölä
    • 1
  • Pekka Nygren
    • 1
    • 4
    Email author
  • Humberto A. Leblanc
    • 2
  • Taina Pennanen
    • 3
  • Janna Pietikäinen
    • 1
  1. 1.Department of Forest SciencesUniversity of HelsinkiFinland
  2. 2.EARTH UniversitySan JoséCosta Rica
  3. 3.Vantaa Research CentreFinnish Forest Research InstituteVantaaFinland
  4. 4.Finnish Society of Forest ScienceVantaaFinland

Personalised recommendations