Advertisement

Nutrient Cycling in Agroecosystems

, Volume 91, Issue 1, pp 1–15 | Cite as

Yield response models to phosphorus application: a research synthesis of Finnish field trials to optimize fertilizer P use of cereals

  • Elena Valkama
  • Risto Uusitalo
  • Eila Turtola
Original article

Abstract

Fertilizer applications should be based on relevant yield response models and be economically justified. In this study, we defined the yield response models of cereals to phosphorus (P) fertilization on the major Finnish soil types by the means of a research synthesis and meta-analysis. We also calculated economically optimum P rates under different price combinations of P fertilizer (1–3 € kg−1) and cereal yields (100–300 € tn−1), for 1-year decision interval of P applications. Our material consisted of data on P fertilizer experiments conducted in Finland during the last 60 years on clay, coarse-textured mineral and organic soils, with variable soil test P (STP) status at the start of the experiments. The cereals cultivated were spring barley, oats, spring and winter wheat, and winter rye. The applied P rates ranged between 6 and 100 kg ha−1. For low STP classes, Mitscherlich-type exponential models were appropriate for all soil groups, predicting 17–27% higher maximum yields when compared to the controls without added P. In contrast, for medium and high STP classes, the yield responses to increasing P rates were scattered around zero in most soils. Phosphorus fertilization had also negligible effect on 1,000-seed and test weights. On Finnish cereal farms, when P fertilizer is purchased, the present P rates allowed by the Agri-Environmental Programme are uneconomically high. It appears that P fertilization can be substantially reduced on majority of Finnish fields, or even omitted for years, without economic loss under current (2 € kg−1) or higher P fertilizer prices.

Keywords

Phosphorus fertilization Yield response models Yield quality Meta-analysis Mitscherlich equation Economical optimum 

Notes

Acknowledgments

This study was funded by MTT Agrifood Research Finland and by TEHO project. We thank Perttu Virkajärvi, Martti Vuorinen, Arjo Kangas, Mika Isolahti, Yrjö Salo, and Kari Ylivainio (MTT Agrifood Research Finland) for providing the most recent data for our analysis, Harri Lilja (MTT Agrifood Research Finland) for help with the map of Finland, Dr. Jim Barrow and two anonymous reviewers for useful comments, and Dr. Ellen Valle and Tarja McCartney for English language editing.

Supplementary material

10705_2011_9434_MOESM1_ESM.pdf (66 kb)
Supplementary material 1 (PDF 65 kb)

References

  1. Albertsson B (2008) New P recommendations in Swedish agriculture. In: Rubæk GH (ed) NJF Seminar 401. Phosphorus management in Nordic-Baltic agriculture-reconciling productivity and environmental protection. Uppsala, Sweden, 22–23 September 2008. NJF Report 4(4):47–51Google Scholar
  2. Barker AV, Pilbeam DJ (2006) Handbook of plant nutrition. Taylor & Francis. CRC Press, Boca Raton, FL, USACrossRefGoogle Scholar
  3. Barrow NJ (1974) The slow reactions between soil and anions. I. Effects of soil, temperature and water content of a soil on the decrease in effectiveness of phosphate for plant growth. Soil Sci 118:380–385CrossRefGoogle Scholar
  4. Barrow NJ (1983) A mechanistic model for describing the sorption and desorption of phosphate by soil. Eur J Soil Sci 34:733–750CrossRefGoogle Scholar
  5. Colomb B, Debaeke P, Jouany C, Nolot JM (2007) Phosphorus management in low input stockless cropping systems: crop and soil responses to contrasting P regimes in a 36-year experiment in southern France. Eur J Agron 26:154–165CrossRefGoogle Scholar
  6. Cooper H, Hedges LV, Valentine JC (2009) The handbook of research synthesis and meta-analysis, 2nd edn. Russell Sage Foundation, New YorkGoogle Scholar
  7. Dodd JR, Mallarino AP (2005) Soil-test phosphorus and crop grain yield responses to long-term phosphorus fertilization for corn-soybean rotations. Soil Sci Soc Am J 69:1118–1128CrossRefGoogle Scholar
  8. Efron B, Tibshirani R (1986) Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist Sci 1:54–77CrossRefGoogle Scholar
  9. Gilbert N (2009) The disappearing nutrient. Nat 461:716–718CrossRefGoogle Scholar
  10. Gurevitch J, Hedges LV (1999) Statistical issues in ecological meta-analysis. Ecol 80:1142–1149CrossRefGoogle Scholar
  11. Hedges LV, Gurevitch J, Curtis PS (1999) The meta-analysis of response ratios in experimental Ecology. Ecol 80:1150–1156CrossRefGoogle Scholar
  12. Knudsen L (2008) Strategies for P fertilization in Denmark in respect to high prices on mineral P sources. In: Rubæk GH (ed) NJF Seminar 401, Phosphorus management in Nordic-Baltic agriculture-reconciling productivity and environmental protection. Uppsala, Sweden, 22–23 September 2008. NJF Report 4(4):57–62Google Scholar
  13. Krogstad T, Øgaard AF, Krisfoffersen AØ (2008) New P recommendations for grass and cereals in Norwegian agriculture. In: Rubæk GH (ed) NJF Seminar 401, Phosphorus management in Nordic-Baltic agriculture-reconciling productivity and environmental protection. Uppsala, Sweden, 22–23 September 2008. NJF Report 4(4):42–46Google Scholar
  14. Lipsey MW, Wilson DB (2001) Practical meta-analysis. Applied social research methods series, 49. SAGE Publications Inc, Thousand Oaks, London, New DelhiGoogle Scholar
  15. McConnell DJ, Dillon JL (1997) Optimization of resource use levels: response analysis. In: McConnell DJ, Dillon JL (eds) Farm management for Asia: a systems approach. FAO Farm Systems Management Series Nr. 13. Food and Agriculture Organization of the United Nations, Rome, Italy, pp 169–188Google Scholar
  16. MMM (2008) Maatalouden ympäristötuen sitoumusehdot 2008. http://www.mavi.fi/attachments/mavi/ymparistotuki/5Glzzy7xW/SitehdotFI_08.pdf (in Finnish). Web address verified 05.04.2011
  17. MMM/Tike (2008) Yearbook of Farm Statistics 2008. Information Centre of the Ministry of Agriculture and Forestry. Helsinki, FinlandGoogle Scholar
  18. Myyrä S, Pietola K, Yli-Halla M (2007) Exploring long-term land improvements under land tenure insecurity. Agr Sys 92:63–75CrossRefGoogle Scholar
  19. Németh T (2006) Application of the Bray-Mitscherlich equation approach for economically and environmentally sound fertilization of field crops in Hungary. Comm Soil Sci Plant Anal 37:2227–2247CrossRefGoogle Scholar
  20. Peltovuori T (1999) Precision of commercial soil testing practice for phosphorus fertilizer recommendations in Finland. Agr Food Sci Finl 8:299–308Google Scholar
  21. Peverill KI, Sparrow LA, Reuter DJ (1999) Soil analysis: an interpretation manual. CSIRO Publishing, Collingwood, AustraliaGoogle Scholar
  22. Quintero CE, Boschetti NG, Benavides RA (2003) Effect of soil buffer capacity on soil test phosphorus interpretation and fertilizer requirement. Comm Soil Sci Plant Anal 34:1435–1450CrossRefGoogle Scholar
  23. Rosenberg MS, Adams DC, Gurevitch J (2000) Metawin: statistical software for meta-analysis, version 2.1. Sinauer Associates, Inc, Sunderland, MA, USAGoogle Scholar
  24. Saarela I, Järvi A, Hakkola H, Rinne K (1995) Fosforilannoituksen porraskokeet 1977–1994. Research Notes 16/95. MTT Agrifood Research Finland, Jokioinen (in Finnish, with English abstract)Google Scholar
  25. Saarela I, Salo Y, Vuorinen M (2006a) Effects of repeated phosphorus fertilization on field crops in Finland. 1. Yield responses on clay and loam soils in relation to soil test P values. Agr Food Sci Finl 15:106–123CrossRefGoogle Scholar
  26. Saarela I, Huhta H, Virkajärvi P (2006b) Effects of repeated phosphorus fertilization on field crops in Finland. 2. Sufficient phosphorus application rates on silty and sandy soils. Agr Food Sci Finl 15:423–443CrossRefGoogle Scholar
  27. Salo T, Eskelinen J, Jauhiainen L, Kartio M (2007) Reduced fertilizer use and changes in cereal grain weight, test weight and protein content in Finland in 1990–2005. Agr Food Sci 16:407–420CrossRefGoogle Scholar
  28. Schabenberger O, Pierce FJ (2002) Contemporary statistical models for the plant and soil sciences. CRC Press, Boca Raton, London, New York, Washington DCGoogle Scholar
  29. Schulte RPO, Herlihy M (2007) Quantifying responses to phosphorus in Irish grasslands: interactions of soil and fertilizer with yield and P concentration. Eur J Agron 26:144–153CrossRefGoogle Scholar
  30. Sippola J (1980) The dependence of yield increases obtained with phosphorus and potassium fertilization on soil test values and soil pH. Ann Agric Fenn 19:100–107Google Scholar
  31. Sippola J, Marjanen H (1978) Viljavuusluokittaiset sadonlisäykset paikallisissa nousevien fosfori-ja kaliummäärien kokeissa. Research Notes 3/78. MTT Agrifood Research Finland, Jokioinen (in Finnish)Google Scholar
  32. Strauss R, Brümmer GW, Barrow NJ (1997) Effects of crystallinity of goethite. 2. Rates of sorption and desorption of phosphate. Eur J Soil Sci 48:101–114CrossRefGoogle Scholar
  33. Tonitto C, David MB, Drinkwater LE (2006) Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: a meta-analysis of crop yield and N dynamics. Agric Ecosys Environ 112:58–72CrossRefGoogle Scholar
  34. Valkama E, Uusitalo R, Ylivainio K, Virkajärvi P, Turtola E (2009) Phosphorus fertilization: a meta-analysis of 80 years of research in Finland. Agric Ecosys Environ 130:75–85CrossRefGoogle Scholar
  35. Vuorinen J, Mäkitie O (1955) The method of soil testing in use in Finland. Agrogeol Publ 63:1–44Google Scholar
  36. Vuorinen M, Virkajärvi P (2007) Fosforilannoitusportaiden ja lisärikin vaikutus mallasohran satoon (KEM V1). In: Issakainen P (ed) Lannoitus–ja kasvinsuojelukokeiden tuloksia 2006. Maaninka: MTT Maaninka, pp 14–19 (in Finnish)Google Scholar
  37. Vuorinen M, Paasikivi P, Isolahti M, Kangas A, Salo Y, Salonen S, Virkajärvi P (2002) P-lannoitusstrategiakoe ohralla. In: Isolahti M (ed) Lannoitus-ja kasvinsuojelukokeiden tuloksia 2001. MTT Alueellinen yksikkö & Kemira Agro Oy, pp 4–19 (in Finnish)Google Scholar
  38. Vuorinen M, Riekki A, Isolahti M, Kangas A, Salo Y, Virkajärvi PM (2003) P-lannoitusstrategiakoe ohralla. In: Koski P (ed) Lannoitus-ja kasvinsuojelukokeiden tuloksia 2002. MTT Alueellinen yksikkö & Kemira Agro Oy, pp 14–25 (in Finnish)Google Scholar
  39. Vuorinen M, Paasikivi P, Isolahti M, Kangas A, Salo Y, Virkajärvi P (2004) P-lannoitusstrategiakoe ohralla (Kem V1). In: Issakainen P (ed) Lannoitus-ja kasvinsuojelukokeiden tuloksia 2003. MTT Alueellinen yksikkö & Kemira Agro Oy, pp 13–22 (in Finnish)Google Scholar
  40. Vuorinen M, Paasikivi P, Kangas A, Salo Y, Virkajärvi P (2005) Fosforilannoitusportaiden ja lisärikin vaikutus mallasohran satoon (KEM V1). In: Issakainen P (ed) Lannoitus-ja kasvinsuojelukokeiden tuloksia 2004. MTT Alueellinen yksikkö & Kemira GrowHow Oyj, pp 15–22 (in Finnish)Google Scholar
  41. Vuorinen M, Kemppainen J, Kangas A, Salo Y, Virkajärvi P (2006) Forforilannoitusportaiden ja lisärikin vaikutus mallasohran satoon (KEM V1). In: Issakainen P (ed) Lannoitus-ja kasvinsuojelukokeiden tuloksia 2005. MTT Alueellinen yksikkö & Kemira GrowHow Oyj, pp 15–22 (in Finnish)Google Scholar
  42. Vuorinen M, Kangas A, Virkajärvi P (2008) Forforilannoitusportaiden ja kasvukauden aikaisen lisärikkilannoituksen vaikutus ohran satoon (KEM V1). In: Issakainen P (ed) Lannoitus-ja kasvinsuojelukokeiden tuloksia 2007. MTT & Kemira GrowHow Oyj/YaraSuomi, pp 12–18 (in Finnish)Google Scholar
  43. Ylivainio K, Turtola E (2009) Kotieläintalouden ylijäämäfosfori kasvintuotannossa. In: Turtola E, Ylivainio K (eds) Suomen kotieläintalouden fosforikierto-säätöpotentiaali maatiloilla ja aluetasolla. Maa-ja elintarviketalous 138, pp 65–162 (in Finnish, with English abstract)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Plant production/Soil and EnvironmentMTT Agrifood Research FinlandJokioinenFinland

Personalised recommendations