Nutrient Cycling in Agroecosystems

, Volume 87, Issue 3, pp 339–352 | Cite as

Uptake and allocation of plant nutrients and Cd in maize, sunflower and tobacco growing on contaminated soil and the effect of soil conditioners under field conditions

  • Erika FässlerEmail author
  • Brett H. Robinson
  • Satish K. Gupta
  • Rainer Schulin
Research Article


Contaminated land may in many cases still be used for agriculture, provided that crops are chosen appropriately, as the accumulation of contaminants varies greatly among cultivars and also plant parts. We aimed to determine whether maize (Zea mays), sunflower (Helianthus annuus) and tobacco (Nicotiana tabaccum) grown on a heavy-metal contaminated soil containing copper (540 mg Cu kg−1), zinc (680 mg Zn kg−1) and cadmium (1.4 mg Cd kg−1) could be used to gradually remediate the soil, while producing valuable biomass. The soil was treated with either a normal fertiliser regime (control), elemental sulphur (S), or the biodegradable chelant NTA (nitrilotriacetic acid), to test how soil acidification or chelating organic compounds would affect the uptake and allocation of selected elements (Ca, Cd, Cu, Fe, K, Mg, Mn, P, S and Zn). The highest concentrations of Cd, Cu and Zn occurred in the leaves and/or roots, while seeds and grains contained much lower concentrations of these elements. All these concentrations, however, were still in the ranges considered normal for the respective plant parts grown on uncontaminated soil. While sunflower and maize could be safely used as food and feed, tobacco would better be used for bioenergy than for cigarette production because of its relatively high foliar Cd concentration. The two treatments (S and NTA) had only slight effects on the uptake and allocation of plant nutrients and Cd. Thus, there was little benefit of these treatments for phytoextraction purposes at this site.


Heavy metal accumulation and distribution in crop plants Phytomanagement Tobacco Maize Sunflower Zinc Cadmium Manganese Copper 



We are grateful to Werner Stauffer for the maintenance of the field experiment and to Anna Grünwald, Diane Bürgi, Fabian von Känel, and Viktor Stadelmann for technical assistance in the lab, as well as to Andreas Papritz for his help in statistical analysis. The project was funded by the Federal Office for Education and Science within COST action 859.


  1. ACW, ART (2007) Schweizerische Referenzmethoden der Eidgenössischen landwirtschaftlichen Forschungsanstalten ART und ACW. Agroscope Reckenholz, Tänikon and Agroscope Changins-WädenswilGoogle Scholar
  2. Alloway BJ, Jackson AP (1991) The behaviour of heavy metals in sewage sludge-amended soils. Sci Total Environ 100:151–176CrossRefPubMedGoogle Scholar
  3. ALP (2004) Fütterungsempfehlungen und Nährwerttabellen für Schweine. Eidgenössische landwirtschaftliche Forschungsanstalt für Nutztiere und Milchwirtschaft ALP (Agroscope Liebefeld-Posieux). Landwirtschaftliche Lehrmittelzentrale, ZollikofenGoogle Scholar
  4. Amon T, Amon B, Kryvoruchko V et al (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98:3204–3212CrossRefPubMedGoogle Scholar
  5. Angelova V, Ivanova R, Ivanov K (2004) Heavy metal accumulation and distribution in oil crops. Commun Soil Sci Plant Anal 35:2551–2566CrossRefGoogle Scholar
  6. Baker AJM, McGrath SP, Sidoli CMD et al (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49CrossRefGoogle Scholar
  7. Bergmann W (1993) Ernährungsstörungen bei Kulturpflanzen. Gustav Fischer Verlag Jena, StuttgartGoogle Scholar
  8. Bernhard D, Rossmann A, Wick G (2005) Metals in cigarette smoke. IUBMB Life 57:805–809CrossRefPubMedGoogle Scholar
  9. Brady NC, Weil RR (2002) The nature and properties of soils. Prentice Hall, Upper Saddle RiverGoogle Scholar
  10. Chaney RL, Malik M, Li YM et al (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284CrossRefPubMedGoogle Scholar
  11. Cimrin KM, Togay Y, Togay N et al (2008) Effects of different sulphur and pyrite levels on yield, yield components and nutrients uptake of lentil (Lens culinaris). Indian J Agric Sci 78:543–547Google Scholar
  12. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefPubMedGoogle Scholar
  13. Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725CrossRefPubMedGoogle Scholar
  14. Domínguez MT, Marañón T, Murillo JM et al (2008) Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: a large-scale phytomanagement case study. Environ Pollut 152:50–59CrossRefPubMedGoogle Scholar
  15. Fässler E, Robinson BH, Stauffer W et al (2009) Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agric Ecosyst Environ. doi: 10.1016/j.agee.2009.11.007 Google Scholar
  16. FIV (1995) Verordnung über Fremd- und Inhaltsstoffe in Lebensmitteln (FIV) des Eidgenössischen Departements des Innern vom 26. Juni 1995, SR-Nr. 817.021.23. Eidgenössische Drucksachen- und Materialzentrale, Bern, p 170Google Scholar
  17. FMBV (1999) Verordnung über die Produktion und das Inverkehrbringen von Futtermitteln, Zusatzstoffen für die Tierernährung, Silierzusätzen und Diätfuttermitteln (FMBV) des Eidgenössischen Volkswirtschaftsdepartements vom 10. Juni 1999, SR-Nr. 916.307.1. Eidgenössische Drucksachen- und Materialzentrale, Bern, p 20Google Scholar
  18. Frossard E, Bucher M, Mächler F et al (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879CrossRefGoogle Scholar
  19. Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198CrossRefPubMedGoogle Scholar
  20. Hernandez LE, Lozano-Rodriguez E, Garate A et al (1998) Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings. Plant Sci 132:139–151CrossRefGoogle Scholar
  21. Juste C, Solda P (1988) Changes in the cadmium, manganese, nickel and zinc bioavailability of a sewage sludge-treated sandy soil as a result of ammonium-sulfate, acid peat, lime or iron compound addition. Agronomie 8:897–904CrossRefGoogle Scholar
  22. Kayser A (2000) Evaluation and enhancement of phytoextraction of heavy metals from contaminated soils. Dissertation, ETH ZurichGoogle Scholar
  23. Kayser A, Wenger K, Keller A et al (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783CrossRefGoogle Scholar
  24. Kulli B, Balmer M, Krebs R et al (1999) The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J Environ Qual 28:1699–1705CrossRefGoogle Scholar
  25. Küpper H, Lombi E, Zhao FJ et al (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84CrossRefPubMedGoogle Scholar
  26. Küpper H, Mijovilovich A, Meyer-Klaucke W et al (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757CrossRefPubMedGoogle Scholar
  27. Kurz H, Schulz R, Römheld V (1999) Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants. J Plant Nutr Soil Sci 162:323–328CrossRefGoogle Scholar
  28. Licht LA, Isebrands JG (2005) Linking phytoremediated pollutant removal to biomass economic opportunities. Biomass Bioenergy 28:203–218CrossRefGoogle Scholar
  29. Liu JG, Qian M, Cai GL et al (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447CrossRefPubMedGoogle Scholar
  30. Lugon-Moulin N, Zhang M, Gadani F et al (2004) Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Adv Agron 83:111–180CrossRefGoogle Scholar
  31. Ma JF, Ueno D, Zhao FJ et al (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736CrossRefPubMedGoogle Scholar
  32. Marschner H (1995) Mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  33. McLaughlin MJ, Tiller KG, Naidu R et al (1996) Review: the behaviour and environmental impact of contaminants in fertilizers. Aust J Soil Res 34:1–54CrossRefGoogle Scholar
  34. McLaughlin MJ, Parker DR, Clarke JM (1999) Metals and micronutrients—food safety issues. Field Crops Res 60:143–163CrossRefGoogle Scholar
  35. Meher KK, Panchwagh AM, Rangrass S et al (1995) Biomethanation of tobacco waste. Environ Pollut 90:199–202CrossRefPubMedGoogle Scholar
  36. Nasreen S, Huq ISM (2002) Effect of sulphur fertilizer on yield and nutrient uptake of sunflower crop in an albaquept soil. Pak J Biol Sci 5:533–536CrossRefGoogle Scholar
  37. OIS (1998) Ordinance relating to impacts on the soil of the Swiss Federal Council, 1st of July 1998, SR 814.12. Eidgenössische Drucksachen- und Materialzentrale, Bern, p 12Google Scholar
  38. Peng KJ, Luo CL, You WX et al (2008) Manganese uptake and interactions with cadmium in the hyperaccumulator—Phytolacca americana L. J Hazard Mater 154:674–681CrossRefPubMedGoogle Scholar
  39. Pittman JK (2005) Managing the manganese: molecular mechanisms of manganese transport and homeostasis. New Phytol 167:733–742CrossRefPubMedGoogle Scholar
  40. RAC, FAL (2001) Grundlagen für die Düngung im Acker- und Futterbau der Eidgenössischen Forschungsanstalt für Agrarökologie und Landbau, Reckenholz (FAL), und der Eidgenössischen Forschungsanstalt für Pflanzenbau, Changins (RAC). Agrar Forschung 8:1–80Google Scholar
  41. Satofuka H, Fukui T, Takagi M et al (2001) Metal-binding properties of phytochelatin-related peptides. J Inorg Biochem 86:595–602CrossRefPubMedGoogle Scholar
  42. SG U (1983) Umweltschutzgesetz (Environmental Protection Act, EPA) der Schweizerischen Bundesversammlung vom 7. Oktober 1983, SR-Nr. 814.01. Eidgenössische Drucksachen- und Materialzentrale, Bern, p 42Google Scholar
  43. SwissFIR (2008) Schweizer Nährwerttabellen. ETH Zürich and Bundesamt für Gesundheit, Zürich and BernGoogle Scholar
  44. Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock. CAB International, OxonCrossRefGoogle Scholar
  45. Walter U, Ryser J-P, Flisch R (2001) Agrarforschung - Grundlagen für die Düngung im Acker- und Futterbau 2001. FAL/AMTRA, Zürich und NyonGoogle Scholar
  46. Wenger K, Gupta SK, Furrer G et al (2002a) Zinc extraction potential of two common crop plants, Nicotiana tabacum and Zea mays. Plant Soil 242:217–225CrossRefGoogle Scholar
  47. Wenger K, Kayser A, Gupta SK et al (2002b) Comparison of NTA and elemental sulfur as potential soil amendments in phytoremediation. Soil Sediment Contam 11:655–672CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Erika Fässler
    • 1
    • 3
    Email author
  • Brett H. Robinson
    • 2
  • Satish K. Gupta
    • 3
  • Rainer Schulin
    • 1
  1. 1.Institute of Terrestrial EcosystemsETH ZurichZurichSwitzerland
  2. 2.Agriculture and Life Sciences DivisionLincoln UniversityLincoln, CanterburyNew Zealand
  3. 3.Agroscope Reckenholz-Tänikon Research Station (ART)ZurichSwitzerland

Personalised recommendations