Advertisement

Nutrient Cycling in Agroecosystems

, Volume 87, Issue 2, pp 307–325 | Cite as

Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany

  • Kurt MöllerEmail author
  • Rudolf Schulz
  • Torsten Müller
Research Article

Abstract

In Germany, centralized biogas digestion plants (BGP) have been recently constructed. BGPs purchase the substrates from surrounding farmers and, in return, farmers receive the effluents. Substrate inputs, nutrient inputs and outputs were studied for two BGPs with effluent liquid–solid separation. Additionally, the path of the nitrogen (N) during manure handling was assessed. Silage maize (65–75% of the dry matter (DM) inputs) and grass (ca. 20% of the DM inputs) were the main inputs in both BGPs. During manure handling, it is estimated that 20–25% of the N in the effluents was lost via gaseous N emissions. From an environmental point of view the two main challenges are to reduce these gaseous N losses, and to provide N via the effluents mainly for spring manure application, and less so for autumn application. In solid effluents, gaseous N losses during storage are the main potential N loss pathway, whereas for liquid effluents gaseous N losses during and after field spreading are of great relevance. Current management indicated that approximately 50% of the N in the effluents was available for spring application and approximately 30% in autumn due to cleanout of stores before winter. Calculations show that the use of substrates with high DM content during autumn and winter would reduce the demand for storage capacity, thus reducing the demand for store’s cleanout in autumn. This leads to effluents with higher nutrient concentration that are very suitable for application to spring sown crops. Furthermore, some substrates like cereal grains and grass lead to effluents higher in N, whereas silage maize and other substrates lead to effluents low in N. An adapted substrate management would allow more N for spring application. The cycles of P and K are closed, enabling a complete replenishment of the P and K outputs.

Keywords

Biogas digestion Biogas substrates Nitrogen Gaseous N losses 

Abbreviations

BGP

Biogas digestion plant

C

Carbon

DM

Dry matter

FM

Fresh matter

K

Potassium

N

Nitrogen

P

Phosphorus

References

  1. Amon T, Machmüller A, Kryvoruchko V, Milovanovic D, Hrbek R, Eder MW, Stürmer B (2007) Endbericht Forschungsprojekt: Optimierung der Methanausbeute aus Zuckerrüben, Silomais, Körnermais, Sonnenblumen, Ackerfutter, Getreide, Wirtschaftsdünger und Rohglyzerin unter den Standortbedingungen der Steiermark. Available at: http://www.noest.or.at/intern/dokumente/098_ZB_Optimierung_Biogaserzeugung.pdf. Accessed 03 Mar 2009
  2. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:560–564CrossRefGoogle Scholar
  3. Asmus F, Linke B, Dunkel H (1988) Eigenschaften und Düngerwirkung von ausgefaulter Gülle aus der Biogasgewinnung. Arch Acker Pflanzenbau Bodenkd Berlin 32:527–532Google Scholar
  4. Barbarika A, Sikora LJ, Colacicco D (1985) Factors affecting the mineralization of nitrogen in sewage sludge applied to soils. Soil Sci Soc Am J 49:1403–1406CrossRefGoogle Scholar
  5. Beckwith CP, Lewis PJ, Chalmers AG, Froment MA, Smith KA (1999) Successive annual applications of organic manures for cut grass: short-term observations on utilization of manure nitrogen. Grass Forage Sci 57:191–202Google Scholar
  6. Breitschuh G, Reinhold G, Breitschuh T (2006) Ökologische Konsequenzen (einschließlich CC) des Anbaus und der Verwendung nachwachsender Biogasrohstoffe. Thüringer Landesanstalt für Landwirtschaft (TLL) Jena-Zwätzen. Available at: http://www.tll.de/ainfo/pdf/bio20206.pdf. Accessed 22 Sept 2008
  7. Chadwick DR (2005) Emissions of ammonia, nitrous oxide and methane from cattle manure heaps: effect of compaction and covering. Atmos Environ 39:787–799CrossRefGoogle Scholar
  8. Chadwick DR, Sneath RW, Phillips VR, Pain BF (1999) A UK inventory of nitrous oxide emissions from farmed livestock. Atmos Environ 33:3345–3354CrossRefGoogle Scholar
  9. Chambers BJ, Smith KA, Pain BF (2000) Strategies to encourage better use of nitrogen in animal manures. Soil Use Manag 16:157–161Google Scholar
  10. Clemens J, Ahlgrimm H-J (2001) Greenhouse gases from animal husbandry: mitigation options. Nutr Cycl Agroecosyst 60:287–300CrossRefGoogle Scholar
  11. Clemens J, Trimborn M, Weiland P, Amon B (2006) Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric Ecosyst Environ 112:171–177CrossRefGoogle Scholar
  12. Cuttle SP, Scholefield D (1995) Management options to limit nitrate leaching from grassland. J Contaminant Hydrol 20:299–312CrossRefGoogle Scholar
  13. Dinuccio E, Berg W, Balsari P (2008) Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmos Environ 42:2448–2459CrossRefGoogle Scholar
  14. Douglas BF, Magdoff FR (1991) An evaluation of nitrogen mineralization indices for organic residues. J Environ Qual 20:368–372CrossRefGoogle Scholar
  15. Eghball B, Power JF, Gilley JE, Doran JW (1997) Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J Environ Qual 26:189–193CrossRefGoogle Scholar
  16. Flachowsky G, Hennig A (1990) Composition and digestibility of untreated and chemically treated animal excreta for ruminants, a review. Biol Wastes 31:17–36CrossRefGoogle Scholar
  17. Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, Hoboken, 177 pGoogle Scholar
  18. Gordillo RM, Cabrera ML (1997) Mineralizable nitrogen in broiler litter: I. effect of selected litter chemical characteristics. J Environ Qual 26:1672–1679CrossRefGoogle Scholar
  19. Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446CrossRefGoogle Scholar
  20. Hansen MN, Henriksen K, Sommer SG (2006) Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering. Atmos Environ 40:4172–4181CrossRefGoogle Scholar
  21. Hecht M (2008) Die Bedeutung des Carbonat-Puffersystems für die Stabilität des Gärprozesses landwirtschaftlicher Biogasanlagen. Ph.D thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, GermanyGoogle Scholar
  22. Heidenreich T (2006) Berechnung Fugataufkommen von Kofermenten für Biogasanlagen. Available at: http://www.forsten.sachsen.de/de/wu/Landwirtschaft/lfl/inhalt/11364.htm. Accessed 10 June 2009
  23. Herrmann A, Miehe AK, Taube F (2008) Potentielle ökologische Konsequenzen der Biogasproduktion - Monitoring zu Substratanbau und Gärrestverwertung in Schleswig-Holstein. Mitt Ges Pflanzenbauwissenschaften 20:95–96Google Scholar
  24. IPCC (2000) IPCC good practice guidance and uncertainty management in national greenhouse gas inventories. Available at: http://www.ipcc-nggip.iges.or.jp/public/gp/english/index.html
  25. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Volume 4: agriculture, forestry and other land use. Available at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
  26. Kirchmann H, Witter E (1992) Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresour Technol 40:137–142CrossRefGoogle Scholar
  27. Kluge R, Wagner W, Mokry M, Dederer M, Messner J, Haber N (2008) Abschlussbericht des Projektes Inhaltsstoffe von Gärprodukten und Möglichkeiten zu ihrer geordneten landwirtschaftlichen Verwertung. Available at: http://www.landwirtschaft-mlr.baden-wuerttemberg.de/servlet/PB/show/1235603_l1/ltz_Projektbericht:Inhaltsstoffe von Gärprodukten und Möglichkeiten zu ihrer geordneten Verwertung.pdf. Accessed 04 Feb 2009
  28. Koriath H, Herrmann V, Vollmer GR, Franz J (1985) Nährstoffdynamik während der anaeroben Fermentation von Gülle und Wirkung auf den Ertrag und Inhaltsstoffe von Mais im Gefäßversuch. Arch Acker u Pflanzenbau u Bodenkd 29:741–747Google Scholar
  29. Körschens M (1987) N-Ausnutzung in Abhängigkeit von mineralischer und organischer N-Düngung im Verlaufe von vier Jahrzehnten im Statischen Düngungsversuch Lauchstädt. Arch Acker Pflanzenbau Bodenkd Berlin 31:161–168Google Scholar
  30. Koster IW, Lettinga G (1988) Anaerobic digestion at extreme ammonia concentrations. Biol Wastes 25:51–59CrossRefGoogle Scholar
  31. Kroiss H, Plahl-Wabnegg F (1983) Sulfide toxicity with anaerobic wastewater treatment. In: Van der Brink WJ (ed) Proceedings of the European symposium on anaerobic waste water treatment, Noordwijkerhout. TNO Corporate Communication Department, The Hague, pp 72–85Google Scholar
  32. Külling DR, Menzi H, Sutter F, Lischer P, Kreuzer M (2003) Ammonia, nitrous oxide and methane emissions from differently stored dairy manure derived from grass- and hay-based rations. Nutr Cycl Agroecosyst 65:13–22CrossRefGoogle Scholar
  33. Kyvsgaard P, Sørensen P, Møller E, Magid J (2000) Nitrogen mineralization from sheep faeces can be predicted from the apparent digestibility of the feed. Nutr Cycl Agroecosyst 57:207–214CrossRefGoogle Scholar
  34. Larney FJ, Buckley KE, Hao X, McCaughey WP (2006) Fresh, stockpiled, and composted beef cattle feedlot manure: nutrient levels and mass balance estimates in Alberta and Manitoba. J Environ Qual 35:1844–1854CrossRefPubMedGoogle Scholar
  35. Leible L, Arlt A, Fürniß B, Kälber S, Kappler G, Lange S, Nieke E, Rösch C, Wintzer D (2003) Energie aus biogenen Rest- und Abfallstoffen. Bereitstellung und energetische Nutzung organischer Rest- und Abfallstoffe sowie Nebenprodukte als Einkommensalternative für die Land- und Forstwirtschaft - Möglichkeiten, Chancen und Ziele. Available at: http://www.itas.fzk.de/dez/lit/2003/leua03a.pdf. Accessed 23 Feb 2009
  36. Levi-Minzi R, Riffaldi R, Saviozzi A (1990) Carbon mineralization in soil amended with different organic materials. Agric Ecosyst Environ 31:325–335CrossRefGoogle Scholar
  37. LfL (2009) Berechnung des Deckungsbeitrages von Biogas-Mais stehend ab Feld. Institute for Rural Structural Development, Business Management and Agroinformatics. Bayerische Landesanstalt für Landwirtschaft. Available at: http://www.lfl.bayern.de/ilb/db/14249/index.php. Accessed 27 Oct 2009
  38. Lupwayi NZ, Haque I (1998) Mineralization of N, P, K, Ca and Mg from Sesbania and Leucaena leaves varying in chemical composition. Soil Biol Biochem 30:337–343CrossRefGoogle Scholar
  39. McCarty PL (1964) Anaerobic waste treatment fundamentals. Public Works 95:91–126Google Scholar
  40. McCrory DF, Hobbs PJ (2001) Additives to reduce ammonia and odor emissions from livestock wastes: a review. J Environ Qual 30:345–355CrossRefPubMedGoogle Scholar
  41. Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30:1–16CrossRefGoogle Scholar
  42. Möller K, Stinner W, Deuker A, Leithold G (2008) Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr Cycl Agroecosyst 82:209–232CrossRefGoogle Scholar
  43. Müller T, Jensen LS, Nielsen NE, Magid J (1998) Turnover of carbon and nitrogen in a sandy loam soil following incorporation of chopped maize plants, barley straw and blue grass in the field. Soil Biol Biochem 30:561–571CrossRefGoogle Scholar
  44. Paillat J-M, Robin P, Hassouna M, Leterme P (2005) Predicting ammonia and carbon dioxide emissions from carbon and nitrogen biodegradability during animal waste composting. Atmos Environ 39:6833–6842CrossRefGoogle Scholar
  45. Paul JW, Dinn NE, Kannangara T, Fisher LJ (1998) Protein content in dairy cattle diets affects ammonia losses and fertiliser nitrogen value. J Environ Qual 27:528–534CrossRefGoogle Scholar
  46. Petersen J, Sørensen P (2008) Loss of nitrogen and carbon during storage of the fibrous fraction of separated pig slurry and influence on nitrogen availability. J Agric Sci 146:403–413CrossRefGoogle Scholar
  47. Petersen SO, Lind A-M, Sommer SG (1998) Nitrogen and organic matter losses during storage of cattle and pig manure. J Agric Sci 130:69–79CrossRefGoogle Scholar
  48. Pfundtner E (2008) Nährstoff- und Humuswirkung von Gärresten aus Biogasanlagen. In: Arbeitsgemeinschaft für Lebensmittel- Veterinär- und Agrarwesen (ed) Proceedings ALVA-Jahrestagung 2008, Gumpenstein, Austria, 26. and 27. May 2008. Available at: http://www.alva.at/Seiten/Publikationen/Tagungsband_2008.pdf. Accessed 24 Sept 2008, pp 131–133
  49. Powell JM, Wattiaux MA, Broderick GA, Moreira VR, Casler MD (2006) Dairy diet impacts on fecal chemical properties and nitrogen cycling in soils. Soil Sci Soc Am J 70:786–794CrossRefGoogle Scholar
  50. Reinertsen SA, Elliott LF, Cochran VL, Campbell GS (1984) Role of available carbon and nitrogen in determining the rate of wheat straw decomposition. Soil Biol Biochem 16:459–464CrossRefGoogle Scholar
  51. Reinhold G (2006) Masse- und Trockensubstanzbilanz in landwirtschaftlichen Biogasanlagen. Available at: http://www.dlv.de/grafiken/1700/Biogasgewicht3.pdf. Accessed 28 Apr 2009
  52. Reinhold G, Klimanek E-M, Breitschuh G (1991) Zum Einfluss der Biogaserzeugung auf Veränderungen in der Kohlenstoffdynamik von Gülle. Arch Acker Pflanzenbau Bodenkd 35:129–137Google Scholar
  53. Saviozzi A, Levi-Minzi R, Riffaldi R (1993) Mineralization parameters from organic materials added to soil as a function of their chemical composition. Bioresour Technol 45:131–135CrossRefGoogle Scholar
  54. Schröder JJ, Uenk D, Hilhorst GJ (2007) Long-term nitrogen fertilizer replacement value of cattle manures applied to cut grassland. Plant Soil 299:83–99CrossRefGoogle Scholar
  55. Sensel K, Ellmer F (2007) Gärrückstände aus der Erzeugung von Biogas mit Energiepflanzen - Stoffkenngrößen und Variabilität. Mitt. Ges. Pflanzenbauwiss. 19, 204-205. http://www.gpw.uni-bonn.de/pdf/publikation/Tagungsband202007_Homepage.pdf. Accessed 23 Sept 2008
  56. Sensel K, Wragge V (2008) Pflanzenbauliche Verwertung von Gärrückständen aus Biogasanlagen unter besonderer Berücksichtigung des Inputsubstrats Energiepflanzen. Available at: http://www.fnr-server.de/ftp/pdf/berichte/22012105.pdf. Accessed 9 Mar 2009
  57. Serna MD, Pomares F (1991) Comparison of biological and chemical methods to predict nitrogen mineralization in animal wastes. Biol Fertil Soils 12:89–94CrossRefGoogle Scholar
  58. Smith KA, Chambers BJ (1993) Utilizing the nitrogen content of organic manures on farms-problems and practical solutions. Soil Use Manag 9:105–112CrossRefGoogle Scholar
  59. Sommer SG, Hutchings N (1995) Techniques and strategies for the reduction of ammonia emission from agriculture. Water Air Soil Pollut 85:237–248CrossRefGoogle Scholar
  60. Sommer SG, Hutchings NJ (2001) Ammonia emissions from field applied manure and its reduction—invited paper. Eur J Agron 15:1–15CrossRefGoogle Scholar
  61. Sommer SG, Møller HB (2000) Emission of greenhouse gases during composting of deep litter from pig production—effect of straw content. J Agric Sci 134:327–335CrossRefGoogle Scholar
  62. Sommer SG, Jensen LS, Clausen SB, Søgaard HT (2006) Ammonia volatilization from surface-applied livestock slurry as affected by slurry composition and slurry infiltration depth. J Agric Sci 144:229–235CrossRefGoogle Scholar
  63. Thorman RE, Chadwick DR, Harrison R, Boyles LO, Matthews R (2007) The effect on N2O emissions of storage conditions and rapid incorporation of pig and cattle farmyard manure into tillage land. Biosyst Eng 97:501–511CrossRefGoogle Scholar
  64. Tiquia SM, Richard TL, Honeyman MS (2002) Carbon, nutrient and mass loss during composting. Nutr Cycl Agroecosyst 62:15–24CrossRefGoogle Scholar
  65. van Kessel JS, Reeves JB, Meisinger JJ (2000) Nitrogen and carbon mineralization of potential manure components. J Environ Qual 29:1669–1677CrossRefGoogle Scholar
  66. Vogt R (2008) Basisdaten zu THG-Bilanzen für Biogas-Prozessketten und Erstellung neuer THG-Bilanzen. Available at: http://www.ifeu.de/oekobilanzen/pdf/THG_Bilanzen_Bio_Erdgas.pdf. Accessed 23 Oct 2008
  67. Weiland P (2006) Stand der Technik von Biogasanlagen und aktueller Forschungsbedarf. Available at: http://www.zukuenftig-bioenergie.de/download/ergebnisse_husum/Stand_der_Technik_BGA_ WEILAND.pdf. Accessed 1 July 2009
  68. Wendland M, Diepolder M, Capriel P (2007) Leitfaden für die Düngung von Acker- und Grünland. Bayerische Landesanstalt für Landwirtschaft (LfL) (ed.). LfL-Information. Available at: http://www.lfl.bayern.de/publikationen/daten/informationen/p_24402.pdf. Accessed 24 Feb 2009
  69. Wragge V, Ellmer F (2007) Rückstände aus der Biogaserzeugung als Düngemittel bei Sommerweizen. Mitt. Ges. Pflanzenbauwiss. 19, S. 206-207. http://www.gpw.uni-bonn.de/pdf/publikation/Tagungsband2007_Homepage.pdf. Accessed 23 Sept 2008
  70. Wulf S, Maeting M, Clemens J (2002) Application technique and slurry cofermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: I. ammonia volatilization. J Environ Qual 31:1789–1794CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Plant NutritionUniversität HohenheimStuttgartGermany

Personalised recommendations