Nutrient Cycling in Agroecosystems

, Volume 87, Issue 1, pp 137–149

Potassium uptake and requirement in organic grassland farming

Research Article

Abstract

Use of mineral fertilizers is restricted in organic farming. The aim of the present paper was therefore to study whether potassium (K) limits yields in Norwegian organic grasslands. The K status in soil and herbage on 26 organic farms was investigated, and the response to K application in six fertilization experiments was explored. Further, the relationship between soil K analyses and K release from soil was examined. K application to grassland on the investigated farms was generally low, giving negative field K balances on 23 of the farms. The soils were classified as low or intermediate in readily available K (KAL) on 23 of the farms. The mean K concentration for herbage samples from the first cut on these farms was 18.0 g K kg−1 dry matter. In fertilization experiments, K application increased the K concentration in herbage. However, there was no significant effect on yield, even when K concentration in herbage on plots without K application was low. The lack of significant yield response to K application can be explained by low amounts of crop-available nitrogen (N). There was a tendency for increased plant uptake from reserve K with increasing values of acid soluble K (K–HNO3) in soil. Separate K analyses of timothy (Phleum pratense) and red clover (Trifolium pratense) revealed that red clover showed better competitiveness for K than timothy in leys where N supply was limited.

Keywords

Available potassium Organic farming Potassium application Soil analysis Red clover Timothy 

References

  1. Aasbø B, Steinshamn H, Krogstad T, Thuen E (1999) Changes in phosphorus and potassium content of topsoil on conversion to organic dairy production. Nordisk Jordbrugsforskning 81:152Google Scholar
  2. Andrist-Rangel Y, Edwards AC, Hillier S, Öborn I (2007) Long-term K dynamics in organic and conventional mixed cropping systems as related to management and soil properties. Agric Ecosyst Environ 122:413–426CrossRefGoogle Scholar
  3. Asdal Å, Bakken AK (1999) Nutrient balances and yields during conversion to organic farming in two crop rotation systems. In: Olesen JE, Eltun R, Gooding MJ, Jensen ES, Köpke U (eds) Designing and testing crop rotations for organic farming. FØJO report no 5, pp 125–132Google Scholar
  4. Askegaard M, Eriksen J (2000) Potassium retention and leaching in an organic crop rotation on loamy sand as affected by contrasting potassium budgets. Soil Use Manag 16:200–205Google Scholar
  5. Askegaard M, Eriksen J (2002) Exchangeable potassium in soil as indicator of potassium status in an organic crop rotation on loamy sand. Soil Use Manag 18:84–90CrossRefGoogle Scholar
  6. Bélanger G, Gastal F (2000) Nitrogen utilization by forage grasses. Can J Plant Sci 80:11–20Google Scholar
  7. Bergmann W (1988) Ernährungsstörungen bei Kulturpflanzen. Gustav Fischer Verlag, StuttgartGoogle Scholar
  8. Berry PM, Sylvester-Bradley R, Philipps L, Hatch DJ, Cuttle SP, Rayns FW, Gosling P (2002) Is the productivity of organic farms restricted by the supply of available nitrogen? Soil Use Manag 18:248–255CrossRefGoogle Scholar
  9. Bioforsk (2009) Gjødslingshåndbok. http://www.bioforsk.no/ikbViewer/page/tjenester/tjenester?p_dimension_id=15395 (in Norwegian)
  10. Blevins DG (1985) Role of potassium in protein metabolism in plants. In: Munson RD (ed) Potassium in agriculture. ASA, CSSA, SSSA, Madison, pp 413–424Google Scholar
  11. Dampney PMR (1992) The effect of timing and rate of potash application on the yield and herbage composition of grass grown for silage. Grass Forage Sci 47:280–289CrossRefGoogle Scholar
  12. Duke SH, Collins M (1985) Role of potassium in legume dinitrogen fixation. In: Munson RD (ed) Potassium in agriculture. ASA, CSSA, SSSA, Madison, pp 443–465Google Scholar
  13. Ebbesvik M (1998) Økologisk eng - viktige faktorer for avlingsnivå, NORSØK-report (no 3, 1998). Norwegian Centre for Ecological Agriculture, No-6630, Tingvoll, 44 pp (in Norwegian)Google Scholar
  14. Egnér H, Riehm H, Domingo WR (1960) Untersuchungen über die chemische Boden-Analyse als Grundlage für die Beurteilung des Nährstoffzustandes der Boden. Kungliga Lantbrukshögskolans Annaler 26:199–215Google Scholar
  15. Elonen P (1971) Particle-size analysis of soil. Acta Agral Fenn 122:1–122Google Scholar
  16. Eltun R, Korsæth A, Nordheim O (2002) A comparison of environmental, soil fertility, yield and economical effects in six cropping systems based on an 8 year experiment in Norway. Agric Ecosyst Environ 90:155–168CrossRefGoogle Scholar
  17. Fortune S, Hollies J, Stockdale EA (2004) Effects of different potassium fertilizers suitable for use in organic farming systems on grass/clover yields and nutrient offtakes and interactions with nitrogen supply. Soil Use Manag 20:403–409CrossRefGoogle Scholar
  18. Fystro G, Lunnan T (2006) Analysar av grovfôrkvalitet på NIRS. Bioforsk FOKUS 1(3):180–181 (in Norwegian)Google Scholar
  19. Ghorayshi M, Lotse EG (1986) State and content of potassium in three Swedish soils as affected by cropping and potassium application. Swed J Agric Res 16:143–151Google Scholar
  20. Govasmark E, Steen A, Bakke AK, Strøm T, Hansen S (2005) Factors affecting the concentration of Zn, Fe and Mn in herbage from organic farms and in relation to dietary requirements of ruminants. Acta Agric Scand B Soil Plant Sci 55:131–142Google Scholar
  21. Hinsinger P, Jaillard B (1993) Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. Eur J Soil Sci 44:525–534CrossRefGoogle Scholar
  22. Holmqvist J, Øgaard AF, Öborn I, Edwards AC, Mattson L, Sverdrup H (2003) Application of the PROFILE model to estimate potassium release from mineral weathering in Northern European agricultural soils. Eur J Agron 20:149–163CrossRefGoogle Scholar
  23. Korsaeth A, Eltun R (2008) Synthesis of the Apelsvoll cropping system experiment in Norway—nutrient balances, use efficiencies and leaching. In: Kirchmann H, Bergström L (eds) Organic crop production: ambitions and limitations, SpringerGoogle Scholar
  24. Kuhlmann H, Wehrmann J (1984) Kali-Düngeempfehlung auf der Grundlage von 81 K-Düngungsversuchen zu Getreide und Zuckerrüben auf Lössböden in Südniedersachsen. Zeitschrift für Pflanzenernährung und Bodenkunde 147:349–360CrossRefGoogle Scholar
  25. Løes AK, Øgaard AF (1997) Changes in the nutrient content of agricultural soil on conversion to organic farming, in relation to farm level nutrient balances and soil contents of clay and organic matter. Acta Agric Scand B Soil Plant Sci 47:201–214Google Scholar
  26. Lunnan T, Øgaard AF (2005) Effekt av kaliumgjødsling i eng på mineralinnhold og fôrkvalitet. Grønn kunnskap 9(2):460–466Google Scholar
  27. MacLeod LB (1969) Effects of N, P and K and their interactions on the yield and kernel weight of barley in hydroponic culture. Agron J 61:26–29Google Scholar
  28. Mengel K, Kirkby EA (1987) Principles of plant nutrition. International Potash Institute, BernGoogle Scholar
  29. Møberg JP, Nielsen J (1983) Mineralogical changes in soils used for potassium-depletion experiments for some years in pots and in the field. Acta Agric Scand 33:21–27CrossRefGoogle Scholar
  30. Moore KJ, Moser LE, Vogel KP, Waller SS, Johnsen BE, Pedersen JF (1991) Describing and quantifying growth stages of perennial forage grasses. Agron J 83:1073–1077Google Scholar
  31. Nelson DW, Sommers LE (1982) Total carbon, organic carbon and organic matter. In: Page AL (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 539–580Google Scholar
  32. Øgaard AF, Krogstad T (2005) Release of interlayer potassium in Norwegian grassland soils. J Plant Nutr Soil Sci 168:80–88CrossRefGoogle Scholar
  33. Øgaard AF, Krogstad T, Lunnan T (2002) Ability of some Norwegian soils to supply grass with potassium (K)—soil analyses as predictors of K supply from soil. Soil Use Manag 18:412–420CrossRefGoogle Scholar
  34. Pratt PF (1965) Potassium. In: Black CA (ed) Methods of soils analysis part 2: chemical and microbiological properties. American Society of Agronomy, Madison, pp 1023–1031Google Scholar
  35. Riley H (1996) Estimation of physical properties of cultivated soils in southeast Norway from readily available soil information. Nor J Agric Sci 25:1–51Google Scholar
  36. Rodushkin I, Ruth T, Huhtasaari A (1999) Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Anal Chim Acta 378:191–200CrossRefGoogle Scholar
  37. SAS Institute Inc (1996) SAS/STAT™ guide for personal computers, 6.12 edn. SAS Institute Inc., CaryGoogle Scholar
  38. Scheffer F, Schachtschabel P (1998) Lehrbuch der Bodenkunde. Ferdinand Enke Verlag, StuttgartGoogle Scholar
  39. Schön M, Niederbudde EA, Mahkorn A (1976) Ergebnisse eines 20-jährigen Versuches mit Mineral- und Stallmistdüngung im Lössgebiet bei Landsberg (Lech). Zeitschrift für Acker-und Pflanzenbau 143:27–37Google Scholar
  40. Sinclair AH (1979) Availability of potassium to ryegrass from Scottish soils. I. Effects of intensive cropping on potassium parameters. J Soil Sci 30:757–773CrossRefGoogle Scholar
  41. Steffens D, Mengel K (1979) Das Aneignungsvermögen von Lolium perenne im Vergleich von Trifolium pratense für Zwischenschicht-Kalium der Tonminerale. Landwirtschaftliche Forschung, Sonderheft 36:120–127Google Scholar
  42. Sveistrup TE, Haraldsen TK (1997) Effects of soil compaction on root development of perennial grass leys in northern Norway. Grass Forage Sci 52:381–387CrossRefGoogle Scholar
  43. von Boguslawski E, van Lieres A (1981) Biologischer und chemischer Nachweis der Kaliumverarmung und ihre Folgen für die Bodenfruchtbarkeit. Landwirtsch Forsch SH 38:722–729Google Scholar
  44. Watson CA, Bengtsson H, Ebbesvik M, Løes AK, Myrbeck Å, Salomon E, Schroder J, Stockdale EA (2002) A rewiew of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag 18:264–273CrossRefGoogle Scholar
  45. Wulff F, Schulz V, Jungk A, Claassen N (1998) Potassium fertilization on sandy soils in relation to soil test, crop yield and K-leaching. Zeitschrift für Pflanzenernährung und Bodenkunde 161:591–599Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Soil and Environment DivisionNorwegian Institute for Agricultural and Environmental ResearchAasNorway
  2. 2.Organic Food and Farming DivisionNorwegian Institute for Agricultural and Environmental ResearchTingvollNorway

Personalised recommendations