Nutrient Cycling in Agroecosystems

, Volume 83, Issue 3, pp 271–287 | Cite as

Nitrogen use efficiency of 15N-labelled sheep manure and mineral fertiliser applied to microplots in long-term organic and conventional cropping systems

  • C. Bosshard
  • P. Sørensen
  • E. Frossard
  • D. Dubois
  • P. Mäder
  • S. Nanzer
  • A. Oberson
Original Article


Nitrogen (N) utilisation by crops has to be improved to minimize losses to the environment. We investigated N use efficiency of animal manure and mineral fertiliser and fate of fertiliser N not taken up by crops in a conventional (CONMIN) and a bio-organic (BIOORG) cropping system of a long-term field experiment over three vegetation periods (winter wheat–soybean–maize). Microplots planted with wheat received a single application of 15N-labelled slurries (either urine or faeces labelled) or mineral fertiliser. At the end of each vegetation period we tested whether higher microbial activity and larger microbial biomass in BIOORG than CONMIN soils, and lower long-term N input level in BIOORG, affected use efficiency and fate of fertiliser N not taken up by crops. Recovery of 15N in wheat was 37%, 10% and 47% from urine, faeces and mineral fertiliser, respectively, and decreased strongly in the residual years. In total 41%, 15% and 50% of 15N applied as urine, faeces and mineral fertiliser was recovered by the three crops. 15N recovered from originally applied urine, faeces and mineral fertiliser in the topsoil (0–18 cm) at the end of the third vegetation period was 19%, 25% and 20%, respectively. Of urine-, faeces- and mineral fertiliser-15N, 40%, 61% and 29%, respectively, was not recovered by the three crops and in topsoil suggesting significant transport of 15N-labelled components to deeper soil layers. CONMIN and BIOORG differed neither in fertiliser N use efficiency by crops nor in 15N recovery in soil indicating insignificant difference in the turnover and utilization of the applied manure nitrogen in the conventional and the bio-organic cropping systems.


Animal manure Microplot Mineral fertiliser 15N use efficiency Organic and conventional cropping systems 



We gratefully acknowledge W. Jossi (ART) and R. Frei (FiBL) for their help in the field work as well as L. Gunst and U. Zihlmann (both ART) for providing data records on the field experiment. The authors thank H.-R. Roth (Seminar for Statistics, ETH) for advice in statistics, S. Recous (INRA, France) for helpful discussions and the anonymous reviewers for their helpful comments on the manuscript. We warmly thank M. Stocki (University of Saskatchewan, Saskatoon) for providing mass spectrometry analyses and R. Ruh, T. Flura, T. Rösch and S. Douxchamps (all from Group of Plant Nutrition, ETH) for technical assistance in the field and the laboratory.


  1. Alef K, Nannipieri P (1995) Soil respiration. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic Press Inc., San Diego, pp 214–219Google Scholar
  2. Bosshard C (2007) Nitrogen dynamics in organic and conventional cropping systems. PhD dissertation, ETH No. 17329, Swiss Federal Institute of Technology ETH, Zurich, Zurich, SwitzerlandGoogle Scholar
  3. Bosshard C, Frossard E, Dubois D, Mäder P, Manolov I, Oberson A (2008) Incorporation of nitrogen-15-labeled amendments into physically separated soil organic matter fractions. Soil Sci Soc Am J 72:949–959CrossRefGoogle Scholar
  4. Cottenie A, Verlod M, Kiekens L, Camerlynck R (1982) Chemical analysis of plant and soil. Laboratory of Analytical and Agrochemistry State University Ghent, Belgium, p 63Google Scholar
  5. Danso SKA, Hardarson G, Zapata F (1993) Misconceptions and practical problems in the use of 15N soil enrichment techniques for estimating N2 fixation. Plant Soil 152:25–52. doi: 10.1007/BF00016331 CrossRefGoogle Scholar
  6. Davidson EA, Hart SC, Shanks CA, Firestone MK (1991) Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores. J Soil Sci 42:335–349. doi: 10.1111/j.1365-2389.1991.tb00413.x CrossRefGoogle Scholar
  7. Dobermann A (2005) Nitrogen use efficiency—state of art. Paper presented at the IFA International Workshop on enhanced-efficiency fertilizers, Frankfurt, Germany, 28–30 June 2005Google Scholar
  8. FAO (Food and Agriculture Organization) (2003) Organic agriculture. In: World agriculture: towards 2015/2030. An FAO perspective. Verified 14 December 2007
  9. Fardeau JC (1993) Le phosphore assimilable des sols: sa représentation par un modèle fonctionnel à plusieurs compartiments. Agronomie 13:317–331. doi: 10.1051/agro:19930409 CrossRefGoogle Scholar
  10. Fliessbach A, Mäder P (2000) Microbial biomass and size-density fractions differ between soils of organic and conventional agricultural systems. Soil Biol Biochem 32:757–768. doi: 10.1016/S0038-0717(99)00197-2 CrossRefGoogle Scholar
  11. Fliessbach A, Oberholzer HR, Gunst L, Mäder P (2007) Soil organic matter and biological soil quality indicators after 21 years of organic and conventional farming. Agric Ecosyst Environ 118:273–284. doi: 10.1016/j.agee.2006.05.022 CrossRefGoogle Scholar
  12. Franzluebbers K, Waever RW, Juo ASR, Franzluebbers AJ (1995) Mineralization of carbon and nitrogen from cowpea leaves decomposing in soils with different levels of microbial biomass. Biol Fertil Soils 19:100–102. doi: 10.1007/BF00336143 CrossRefGoogle Scholar
  13. Gallet A, Flisch R, Ryser JP, Frossard E, Sinaj S (2003) Effect of phosphate fertilization on crop yield and soil phosphorus status. J Plant Nutr Soil Sci 166:568–578. doi: 10.1002/jpln.200321081 CrossRefGoogle Scholar
  14. Glendining MJ, Poulton PR, Powlson DS, Jenkinson DS (1997) Fate of 15N-labelled fertilizer applied to spring barley grown on soils of contrasting nutrient status. Plant Soil 195:83–98. doi: 10.1023/A:1004295531657 CrossRefGoogle Scholar
  15. Gunapala N, Scow KM (1998) Dynamics of soil microbial biomass and activity in conventional and organic farming systems. Soil Biol Biochem 30:805–816. doi: 10.1016/S0038-0717(97)00162-4 CrossRefGoogle Scholar
  16. Gutser R, Ebertseder T, Weber A, Schraml M, Schmidhalter U (2005) Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. J Plant Nutr Soil Sci 168:439–446. doi: 10.1002/jpln.200520510 CrossRefGoogle Scholar
  17. Hauck RD, Bremner JM (1976) Use of tracer for soil and fertilizer nitrogen research. Adv Agron 28:219–266. doi: 10.1016/S0065-2113(08)60556-8 CrossRefGoogle Scholar
  18. Hood R (2001) Evaluation of a new approach to the nitrogen-15 isotope dilution technique, to estimate crop N uptake from organic residues in the field. Biol Fertil Soils 34:156–161. doi: 10.1007/s003740100388 CrossRefGoogle Scholar
  19. IFOAM (International Federation of Organic Agriculture Movements) (2005) Organic agriculture. Verified 14 December 2007
  20. Jenkinson DS, Fox RH, Rayner JH (1985) Interactions between fertilizer nitrogen and soil nitrogen—the so-called ‘priming’ effect. J Soil Sci 36:425–444. doi: 10.1111/j.1365-2389.1985.tb00348.x CrossRefGoogle Scholar
  21. KIP (1999) Richtlinien für den ökologischen Leistungsnachweis (ÖLN). Koordinationsgruppe Richtlinie Deutschschweiz, Landwirtschaftliche Beratungszentrale, LindauGoogle Scholar
  22. Kirchmann H, Bergström L (2001) Do organic farming practices reduce nitrate leaching? Comm Soil Sci Plant Anal 32:997–1028. doi: 10.1081/CSS-100104101 CrossRefGoogle Scholar
  23. Kramer AW, Doane TA, Horwath WR, van Kessel C (2002) Short-term nitrogen-15 recovery vs. long-term total soil N gains in conventional and alternative cropping systems. Soil Biol Biochem 34:43–50. doi: 10.1016/S0038-0717(01)00149-3 CrossRefGoogle Scholar
  24. Kuzyakov Y, Friedel JK, Stahr K (2000) Review of mechanisms and quantification of priming effects. Soil Biol Biochem 32:1485–1498. doi: 10.1016/S0038-0717(00)00084-5 CrossRefGoogle Scholar
  25. Langmeier M, Frossard E, Kreuzer M, Mäder P, Dubois D, Oberson A (2002) Nitrogen fertilizer value of cattle manure applied on soils originating from organic and conventional farming systems. Agronomie 22:789–800. doi: 10.1051/agro:2002044 CrossRefGoogle Scholar
  26. Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697. doi: 10.1126/science.1071148 PubMedCrossRefGoogle Scholar
  27. Mäder P, Fliessbach A, Dubois D, Gunst L, Jossi W, Widmer F, Oberson A, Frossard E, Oehl F, Wiemken A, Gattinger A, Niggli U (2006) The DOK experiment (Switzerland). In: Raupp J, Pekrun C, Oltmanns M, Köpke U (eds) Long-term field experiments in organic farming. Verlag Dr. Köster, Berlin, pp 41–59Google Scholar
  28. Mary B, Recous S, Darwis D, Robin D (1996) Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 181:71–82. doi: 10.1007/BF00011294 CrossRefGoogle Scholar
  29. Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509. doi: 10.1126/science.277.5325.504 CrossRefGoogle Scholar
  30. Muñoz GR, Powell MJ, Kelling KA (2003) Nitrogen budget and soil N dynamics after multiple applications of unlabeled or 15-nitrogen-enriched dairy manure. Soil Sci Soc Am J 67:817–825CrossRefGoogle Scholar
  31. Muñoz GR, Kelling KA, Powell MJ, Speth PE (2004) Comparison of estimates of first-year dairy manure nitrogen availability or recovery using nitrogen-15 and other techniques. J Environ Qual 33:719–727PubMedGoogle Scholar
  32. Oberson A, Nanzer S, Bosshard C, Dubois D, Mäder P, Frossard E (2007) Symbiotic N2 fixation by soybean in organic and conventional cropping systems estimated by 15N dilution and 15N natural abundance. Plant Soil 290:69–83. doi: 10.1007/s11104-006-9122-3 CrossRefGoogle Scholar
  33. Oehl F, Oberson A, Tagmann HU, Besson JM, Dubois D, Mäder P, Roth HR, Frossard E (2002) Phosphorus budget and phosphorus availability in soils under organic and conventional farming. Nutr Cycl Agroecosyst 62:25–35. doi: 10.1023/A:1015195023724 CrossRefGoogle Scholar
  34. Pang XP, Letey J (2000) Organic farming: challenge of timing nitrogen availability to crop nitrogen requirements. Soil Sci Soc Am J 64:247–253Google Scholar
  35. Powell JM, Wu Z, Kelling K, Cusick P, Muñoz G (2004) Differential nitrogen-15 labeling of dairy manure components for nitrogen cycling studies. Agron J 96:433–441Google Scholar
  36. Powell JM, Kelling K, Muñoz G, Cusik PR (2005) Evaluation of dairy manure nitrogen-15 enrichment methods on short-term crop and soil nitrogen budgets. Agron J 97:333–337. doi: 10.2134/agronj2005.0048 CrossRefGoogle Scholar
  37. Rasmussen PE, Douglas CL Jr, Collins HP, Albrecht SL (1998) Long-term cropping system effects on mineralizable nitrogen in soil. Soil Biol Biochem 30:1829–1837. doi: 10.1016/S0038-0717(98)00057-1 CrossRefGoogle Scholar
  38. Reganold JP, Glover JD, Andrews PK, Hinman R (2001) Sustainability of three apple production systems. Nature 410:926–930. doi: 10.1038/35073574 PubMedCrossRefGoogle Scholar
  39. Sørensen P, Jensen ES (1998) The use of 15N labelling to study the turnover and utilization of ruminant manure N. Biol Fertil Soils 28:56–63. doi: 10.1007/s003740050463 CrossRefGoogle Scholar
  40. Sørensen P, Jensen ES (1991) Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination. Anal Chim Acta 252:201–203. doi: 10.1016/0003-2670(91)87215-S CrossRefGoogle Scholar
  41. Sørensen P, Thomsen IK (2005) Separation of pig slurry and plant utilization and loss of nitrogen-15-labeled slurry nitrogen. Soil Sci Soc Am J 69:1644–1651. doi: 10.2136/sssaj2004.0365 CrossRefGoogle Scholar
  42. Sørensen P, Jensen ES, Nielsen NE (1994a) The fate of 15N-labelled organic nitrogen in sheep manure applied to soils of different texture under field conditions. Plant Soil 162:39–47. doi: 10.1007/BF01416088 CrossRefGoogle Scholar
  43. Sørensen P, Jensen ES, Nielsen NE (1994b) Labelling of animal manure nitrogen with 15N. Plant Soil 162:31–37. doi: 10.1007/BF01416087 CrossRefGoogle Scholar
  44. Sørensen P, Jensen B, Thomsen IK, Jensen ES, Christensen BT (1998) The fate of 15N-labelled animal manure components in soil. In: Proceedings of the 16th world congress of soil science, Montpellier, FranceGoogle Scholar
  45. Thomsen IK, Kjellerup V, Jensen B (1997) Crop uptake and leaching of 15N applied in ruminant slurry with selectively labelled faeces and urine fractions. Plant Soil 197:233–239. doi: 10.1023/A:1004224615075 CrossRefGoogle Scholar
  46. Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284. doi: 10.1126/science.1057544 PubMedCrossRefGoogle Scholar
  47. USDA (1999) Soil taxonomy—a basic system of soil classification for making and interpreting soil surveys. United States Department of AgricultureGoogle Scholar
  48. Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi: 10.1016/0038-0717(87)90052-6 CrossRefGoogle Scholar
  49. VSBLO (2003) Richtlinien und Verordnung zum Biolandbau. FiBL, FrickGoogle Scholar
  50. Walther U, Ryser JP, Flisch R (2001) Grundlagen für die Düngung im Acker- und Futterbau (GRUDAF). Agrarforschung 8:1–80Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. Bosshard
    • 1
  • P. Sørensen
    • 2
  • E. Frossard
    • 1
  • D. Dubois
    • 3
  • P. Mäder
    • 4
  • S. Nanzer
    • 1
  • A. Oberson
    • 1
  1. 1.Group of Plant Nutrition, Institute of Plant SciencesSwiss Federal Institute of Technology (ETH) ZurichLindauSwitzerland
  2. 2.Department of Agroecology and Environment, Faculty of Agricultural SciencesUniversity of AarhusTjeleDenmark
  3. 3.Agroscope Reckenholz-Tänikon (ART)ZurichSwitzerland
  4. 4.Research Institute of Organic Farming (FiBL)FrickSwitzerland

Personalised recommendations