Nutrient Cycling in Agroecosystems

, Volume 74, Issue 2, pp 157–174 | Cite as

Field Validation of DNDC Model for Methane and Nitrous Oxide Emissions from Rice-based Production Systems of India

  • Y. Jagadeesh Babu
  • C. Li
  • S. Frolking
  • D. R. Nayak
  • T. K. Adhya
Article

Abstract

The DNDC (DeNitrification and DeComposition) model was tested against experimental data on CH4 and N2O emissions from rice fields at different geographical locations in India. There was a good agreement between the simulated and observed values of CH4 and N2O emissions. The difference between observed and simulated CH4 emissions in all sites ranged from −11.6 to 62.5 kg C ha−1 season−1. Most discrepancies between simulated and observed seasonal fluxes were less than 20% of the field estimate of the seasonal flux. The relative deviation between observed and simulated cumulative N2O emissions ranged from −237.8 to 28.6%. However, some discrepancies existed between observed and simulated seasonal patterns of CH4 and N2O emissions. The model simulated zero N2O emissions from continuously flooded rice fields and poorly simulated CH4 emissions from Allahabad site. For all other simulated cases, the model satisfactorily simulated the seasonal variations in greenhouse gas emission from paddy fields with different land management. The model also simulated the C and N balances in all the sites, including other gas fluxes, viz. CO2, NO, NO2, N2 and NH3 emissions. Sensitivity tests for CH4 indicate that soil texture and pH significantly influenced the CH4 emission. Changes in organic C content had a moderate influence on CH4 emission on these sites. Introducing the mid-season drainage reduced CH4 emissions significantly. Process-based biogeochemical modeling, as with DNDC, can help in identifying strategies for optimizing resource use, increasing productivity, closing yield gaps and reducing adverse environmental impacts.

Keywords

Biogeochemical model Global change Methane emission Nitrous oxide emissions Rice paddy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abao, E.B., Bronson, K.F., Wassmann, R., Singh, U. 2000Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditionsNutr. Cycl. Agroecosyst.58131140CrossRefGoogle Scholar
  2. Adhya, T.K., Bharati, K., Mohanty, S.R., Ramakrishnan, B., Rao, V.R., Sethunathan, N., Wassmann, R. 2000Methane emission from rice field at Cuttack, IndiaNutr. Cycl. Agroecosyst.5895105CrossRefGoogle Scholar
  3. Aulakh, M.S., Khera, T.S., Doran, J.W., Bronson, K.F. 2001aDenitrification, N2O and CO2 fluxes in rice-wheat cropping system as affected by crop residues, fertilizer N and legume green manureBiol. Fertil. Soils34375389CrossRefGoogle Scholar
  4. Aulakh, M.S., Khera, T.S., Doran, J.W., Bronson, K.F. 2001bManaging crop residue with green manureureaand tillage in a rice-wheat rotationSoil Sci. Soc. Am. J.65820827CrossRefGoogle Scholar
  5. Baldioli M., Engel T., Klocking B., Priesack E., Schaaf T., Sperr C. and Wang E. 1994. Expert-NEin Baukasten Zur Simulation der stickstoffdynamik in Boden and Pflanze. Prototyp, BenutzerhandbuchLehreinheit fur Ackerbaund informatik im PflanzenbauTU Munchen, Freising, pp. 1–106.Google Scholar
  6. Banerjee, B., Pathak, H., Aggarwal, P.K. 2002Effects of dicyandiamidefarmyard manure and irrigation on ammonia volatilization from an alluvial soil in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) cropping systemBiol. Fertil. Soils36207214CrossRefGoogle Scholar
  7. Bijay-Singh, , Sekhon, G.S. 1976Nitrate pollution of ground water from nitrogen fertilizers and animal wastes in the PunjabIndiaAgric. Environ.35767CrossRefGoogle Scholar
  8. Bijay-Singh, , Sadana, U.S., Arora, B.R. 1991aNitrate pollution of ground water with increasing use of nitrogen fertilizers in PunjabIndiaInd. J. Environ. Health33516518Google Scholar
  9. Bijay-Singh, , Yadvinder-Singh, , Khind, C.S., Meelu, O.P. 1991bLeaching losses of urea-N applied to permeable soils under lowland riceFert. Res.28179184CrossRefGoogle Scholar
  10. Bouwman, A.F. eds. 1999Approaches to Scaling Trace Gas Fluxes in EcosystemsElsevier PressAmsterdam362Google Scholar
  11. Bouwmeestre, R.J.B., Vlek, P.L.G., Stumpe, J.M. 1985Effect of environmental factors on ammonia volatilization from a urea-fertilized soilSoil Sci. Soc. Am. J.49376381CrossRefGoogle Scholar
  12. Bronson, K.F., Neue, H., Singh, U., Abao, E.,Jr. 1997Automated chamber measurements of methane and nitrous oxide flux in a flooded rice soil I. Residuenitrogen, and water managementSoil Sci. Soc. Am. J.61981987CrossRefGoogle Scholar
  13. Buresh, R.J., Woodhead, T., Shepherd, K.D., Flordelis, E., Cabangon, R.C. 1989Nitrate accumulation and loss in a mung bean-lowland rice cropping systemSoil Sci. Soc. Am. J.53477482CrossRefGoogle Scholar
  14. Cai, Z.C. 1996Effect of land use on organic carbon storage in soils in eastern ChinaWater Air Soil Pollut.91383393CrossRefGoogle Scholar
  15. Cai, Z.C., Sawamoto, T., Li, C., Kang, G., Boonjawat, J., Mosier, A.R., Wassmann, R., Tsuruta, H. 2003Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systemsGlobal Biogeochem. Cycles171107CrossRefGoogle Scholar
  16. Cai, Z.C., Xing, G.X., Shen, G.Y., Xu, H., Yan, X.Y., Tsuruta, H., Yagi, K., Minami, K. 1999Measurements of CH4N2O emissions from rice paddies in FengqiuChinaSoil Sci. Plant Nutr.45113Google Scholar
  17. Cao, M., Dent, J.B., Heal, O.W. 1995Modeling of methane emission from rice paddiesGlobal Biogeochem. Cycles9183195CrossRefGoogle Scholar
  18. Cao, M., Gregson, K., Marshall, S. 1998Global methane emissions from wetlands and its sensitivity to climate changeAtmos. Environ.3232933299CrossRefGoogle Scholar
  19. DeDatta, S.K. 1995Nitrogen transformations in wetland rice ecosystemsFert. Res.42193203CrossRefGoogle Scholar
  20. Del Grosso, S., Okima, D., Parton, W., Mosier, A.R., Peterson, G., Schimel, D. 2002Simulated effects of dryland cropping intensification on soil organic matters and greenhouse gas exchanges using the DAYCENT ecosystem modelEnviron. Pollut.116S75S83CrossRefGoogle Scholar
  21. Denier, Gon H.A.C., Neue, H-U. 1995Influence of organic matter incorporation on the CH4 emission from wetland rice fieldGlobal Biogeochem. Cycles91122CrossRefGoogle Scholar
  22. Fillery, I.R.P., Vlek, P.L.G. 1986Reappraisal of the significance of ammonia volatilization as N-loss mechanism in flooded rice fieldsFert. Res.97998CrossRefGoogle Scholar
  23. Flessa, H., Fischer, W.R. 1992Plant-induced changes in the redox potentials of rice rhizospheresPlant Soil1435560CrossRefGoogle Scholar
  24. George, T., Ladha, J.K., Buresh, R.J., Garrity, D.P. 1992Managing native and legume fixed N in lowland rice based cropping systemsPlant Soil1416991CrossRefGoogle Scholar
  25. Gupta, P.K., Mitra, A.P. 1999Greenhouse Gas Emission in India: 1998 ADB-Methane Asia CampaignCouncil of Scientific and Industrial Research and Ministry of Environment and ForestsNew Delhi, IndiaGoogle Scholar
  26. Hassink, J., Whitmore, A.P. 1997A model of the physical protection of organic matter in soilsSoil Sci. Soc. Am. J.61131139CrossRefGoogle Scholar
  27. Haung, Y., Sass, R.L., Fisher, F.M.,Jr. 1998A semi-empirical model of CH4 emission from flooded rice paddy soilsGlobal Change Biol.4247268CrossRefGoogle Scholar
  28. Jain, M.C., Kumar, S., Wassmann, R., Mitra, S., Singh, S.D., Singh, R., Yadav, A.K., Gupta, S. 2000Methane emissions from irrigated rice fields in northern India (New Delhi)Nutr. Cycl. Agroecosyst.587583CrossRefGoogle Scholar
  29. Katyal, J.C., Bijay-Singh, , Vlek, P.L.G., Buresh, R.J. 1987Efficient N use as affected by urea application and irrigation sequenceSoil Sci. Soc. Am. J.51366370CrossRefGoogle Scholar
  30. Kruger, M., Frenzel, P., Conrad, R. 2001Microbial processes influencing methane emission from rice fieldsGlobal Change Biol.74963CrossRefGoogle Scholar
  31. Kumar, U., Jain, M.C., Pathak, H., Kumar, S., Majumdar, D. 2000Nitrous oxide emissions from different fertilizers and its mitigation by nitrification inhibitors in irrigated riceBiol. Fert. Soils32474478CrossRefGoogle Scholar
  32. Ladha, J.K., Dawe, D., Pathak, H., Padre, A.T., Yadav, R.L., Bijay-Singh, , Yadvinder, Singh, Singh, Y., Singh, P., Kundu, A.L., Sakal, R., Ram, N., Regmi, A.P., Gami, S.K., Bhandari, A.L., Amin, R., Yadav, C.R., Bhattarai, S., Das, S., Aggarwal, H.P., Gupta, R.K., Hobbs, P.R. 2003How extensive are yield declines in long-term rice-wheat experiments in Asia?Field Crops Res.81159180CrossRefGoogle Scholar
  33. Li, C.S. 2000Modeling trace gas emissions from agricultural ecosystemsNutr. Cycl. Agroecosyst.58259276CrossRefGoogle Scholar
  34. Li, C.S., Frolking, S., Frolking, T.A. 1992A model of nitrous oxide evolution from soil driven by rainfall events: I. Model structure and sensitivityJ. Geophys. Res.9797599776Google Scholar
  35. Li, C., Frolking, S., Harriss, R.C. 1994Modeling carbon biogeochemistry in agricultural soilsGlobal Biogeochem. Cycles8237254CrossRefGoogle Scholar
  36. Li C., Narayanan V. and Harriss R.C. 1996. Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochem. Cycl. 10: 297–306. doi:10.1029/2002GL015370.Google Scholar
  37. Li C., Mosier A., Wassmann R., Cai Z., Zheng X., Huang Y., Tsuruta J., Boonjawat J. and Lantin R. 2004. Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem. Cycl. 18(1), doi:10.1029/2003GB002045.Google Scholar
  38. Li C., Qiu J.J., Frolking S., Xiao X., Salas W., Moore B., Boles S., Huang Y. and Sass R. 2002. Reduced methane emissions from large-scale changes in water management of China’s rice paddies during 1980–2000. Geophys. Res. Lett. 29(20).Google Scholar
  39. Li, C., Zhuang, Y.H., Frolking, S., Galloway, J.N., Harriss, R.C., Moore, B., Schimel, D., Wang, X.K. 2003Modeling soil organic carbon change in croplands of ChinaEcol. Appl.13327336Google Scholar
  40. Maclean, J.L., Dawe, D.C., Hardy, B., Hettel, G.P. 2002Rice AlmanacInternational Rice Research InstituteLos Banõs, PhilippinesGoogle Scholar
  41. Matthews, R.B., Wassman, R., Arah, J. 2000aUsing a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia: I. Model developmentNutr. Cycl. Agroecosyst.58141159CrossRefGoogle Scholar
  42. Matthews, R.B., Wassmann, R., Knox, W.J., Buendia, L.V. 2000bUsing a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia: IV. Upscaling to national levelsNutr. Cycl. Agroecosyst.58201217CrossRefGoogle Scholar
  43. Mitra, A.P. 1991Greenhouse Gas Emission in India: 1991 Methane CampaignCouncil of Scientific and Industrial Research and Ministry of Environment and ForestsNew Delhi, IndiaGoogle Scholar
  44. Neue, H.U. 1993Methane emission from rice fieldsBiosciences43466474CrossRefGoogle Scholar
  45. Nouchi, I., Hosono, T., Aoki, K., Minami, K. 1994Seasonal variation in CH4 flux from rice paddies associated with CH4 concentration in soil waterrice biomass and temperature and its modelingPlant Soil161195208CrossRefGoogle Scholar
  46. Parton, W.J., Mosier, A.R., Ojima, D.S., Valentine, D.W., Schimel, D.S., Weier, K., Kulmala, A.E. 1996Generalized model for N2N2O production from nitrification and denitrificationGlobal Biogeochem. Cycle10401412CrossRefGoogle Scholar
  47. Pathak, H., Prasad, S., Arti, Bhatia, Shalini, Singh, Kumar, S., Singh, J., Jain, M.C. 2003Methane emission from rice–wheat cropping system in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide applicationAgric. Ecosyst. Environ.97309316CrossRefGoogle Scholar
  48. Patra, A.K., Burford, J.R., Rego, T.J. 1996Volatilization losses of surface applied urea nitrogen from vertisols in the Indian semi-arid tropicsBiol. Fertil. Soils22345349Google Scholar
  49. Potter, C.S., Randerson, J.T., Field, C.B., Matson, P.A., Vitousek, P.M., Mooney, H.A., Klooster, S.A. 1993Terrestrial ecosystem production: a process model based on global satellite and surface dataGlobal Biogeochem. Cycles7811841CrossRefGoogle Scholar
  50. Reddy, K.R., Patrick, W.H.,Jr. 1984Nitrogen transformation and loss in flooded soils and sedimentsCRC Crit. Rev. Environ. Control13273309CrossRefGoogle Scholar
  51. Riley W.J. and Matson P.A. 1989. The NLOSS model. 1998 Fall AGU meeting. Poster A41B-25. AGU Vol. 79, No. 45, 10 Nov. 1998.Google Scholar
  52. Sharma, A.R., Moorthy, B.T.S., Rao, K.S., Venkateswarlu, B. 1995

    Improvement of rice production technology in the conventional areas of eastern India

    Deb, D.L. eds. Sustaining Crop and Animal Productivity – The Challenge of the DecadeAssociated Publishing Co.New Delhi157178
    Google Scholar
  53. Sinha, S.K., Singh, G.B., Rai, M. 1998Decline in Crop Productivity in Haryana and Punjab: Myth or Reality?Indian Council of Agricultural ResearchNew Delhi189Google Scholar
  54. Sozanska, M., Skiba, U., Metcalfe, S. 2002Developing an inventory of N2O emissions from British soilsAtmos. Environ.36987998CrossRefGoogle Scholar
  55. Srivastava, P.C., Singh, T.A. 1996

    Nitrogen in soils and transformation of fertilizer nitrogen

    Tandon, H.L.S. eds. Nitrogen Research and Crop ProductionFDCONew Delhi1431
    Google Scholar
  56. Wang, B., Neue, H.U., Samonte, H.P. 1999Factors controlling diel patterns of methane emission via riceNutr. Cycl. Agroecosyst.53229235CrossRefGoogle Scholar
  57. Wassmann, R., Neue, H-U., Alberto, M.C.R., Lantin, R.S., Bueno, C., Llenaresas, D., Arah, J.M.R., Pepen, H., Seiler, W., Rennenberg, H. 1996Fluxes and pools of CH4 in wet lands in rice soils with varying organic inputsEnviron. Monitor. Assess.42163173CrossRefGoogle Scholar
  58. Willmott, C.J. 1982Some comments on evaluation of model performanceBull. Am. Meteorol. Soc.6313091313CrossRefGoogle Scholar
  59. Witt, C., Cassman, K.G., Olk, D.D., Bider, U., Liboon, S.P., Samson, M.I., Ottow, J.C.G. 2000Crop rotation and residue management effects on carbon sequestration, sequestration and productivity of irrigated rice systemsPlant Soil225263278CrossRefGoogle Scholar
  60. Yu, K., Patrick, W.H.,Jr. 2004Redox window with minimum global warming potential contribution from rice soilsSoil Sci. Soc. Am. J.6820862091CrossRefGoogle Scholar
  61. Yu, K.W., Wang, Z.P., Vermoesen, P., Patrick, W.H.,Jr., Van, Cleemput 2001Nitrous oxide and methane emissions from different soils suspensions: effect of soil redox statusBiol. Fertil. Soils342530CrossRefGoogle Scholar
  62. Zheng, X.H., Wang, M.X., Wang, Y.S., Shen, R.X., Shangguan, X.J., Jin, J.S., Li, L.T. 1997CH4N2O emissions from rice paddy fields in southeast ChinaSci. Atmos. Sin.21231237Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Y. Jagadeesh Babu
    • 1
    • 2
  • C. Li
    • 1
  • S. Frolking
    • 1
  • D. R. Nayak
    • 3
  • T. K. Adhya
    • 3
  1. 1.Complex Systems Research Center, Institute for the Study of Earth, Oceans, and Space University of New HampshireDurhamUSA
  2. 2.Schools of Geography and Earth SciencesMcMaster UniversityHamiltonCanada
  3. 3.Division of Soil Science & MicrobiologyCentral Rice Research InstituteCuttackIndia

Personalised recommendations