Nutrient Cycling in Agroecosystems

, Volume 74, Issue 2, pp 99–113 | Cite as

Modeling Nitrogen Dynamics under Maize on Ferralsols in Western Africa

  • Jean M. Sogbedji
  • Harold M. van Es
  • Kofi L. Agbeko
Article

Abstract

Mathematical models may be applied to simulate nitrogen (N) dynamics under different types of soil and environmental conditions to assess fertilizer N needs or to predict nitrate-N (NO3–N) potential impact on water quality. The research version of LEACHMN was evaluated using data from lysimeters and field experiments conducted at the University of Lomé Research Farm in Togo, West Africa. The model was calibrated for the mineralization, nitrification, denitrification and volatilization rate constants with measured values of NO3–N leaching losses and maize (Zea mays L.) N uptake collected from the lysimeter experiment. The model was then tested against measured data of soil profile NO3–N distribution and maize N uptake from the field experiment and drainage water collected from the lysimeter experiment. The testing procedure involved two scenarios with increasing level of generalization for transformation rate constants (i) rate constant values for each N treatment and (ii) rate constant values averaged over N treatments. LEACHMN effectively simulated drainage water volume and rate (r2= 0.94 to 0.99). During the calibration efforts, the model satisfactorily simulated NO3–N leaching losses (r2= 0.98) and accurately simulated growing season cumulative maize N uptake. The variation of the calibrated rate constants among N treatments was primarily linked to the model's incapacity to accurately simulate maize N uptake throughout the growing period. When tested using calibrated rate constants for each treatment, the model was successful in simulating soil profile NO3–N distribution (r2 = 0.52 to 0.94). Simulations of soil profile NO3–N distribution were not satisfactory (r2= 0.03 to 0.49) when rate constants were averaged over N treatments. Improvement of the plant N uptake routine of the model is needed to increase the model’s performance. Using the LEACHMN model to predict N dynamics on the Ferralsols of southern Togo appears feasible when appropriate calibrations are performed.

Keywords

Ferralsols Fertilizer N LEACHMN model simulations Maize Nitrogen dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addiscott, T.M., Whitmore, A.P. 1987Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winterand springJ. Agri. Sci. Camb.109141157CrossRefGoogle Scholar
  2. Addiscott, T.M., Whitmore, A.P., Powlson, D.S. 1991Farming, Fertilizerand the Nitrate ProblemCAB InternationalWallingford, UKGoogle Scholar
  3. Angle, J.S., Gross, C.M., Hill, R.L., McIntosh, M.S. 1996Soil nitrate concentrations under corn as affected by tillagemanureand fertilizer applicationsJ. Environ. Qual.22141147CrossRefGoogle Scholar
  4. Atchou Y.K. 1988. Problèmes rélatifs a l’utilisation des engrais au Togo. In: Tshibaka T.B. and Baanante C.A. (eds.) Fertilizer Policy in Tropical Africa1988. Workshop Proceedings. IFDC, IFPRI, LomeTogoApril 1988 pp. 84–93.Google Scholar
  5. Baker, J., Johnson, H.P. 1981Nitrate nitrogen in tile drainage as affected by fertilizationJ. Environ. Qual.10519522Google Scholar
  6. Bergström, L., Jarvis, N.J. 1991Prediction of nitrate leaching losses from arable land under different fertilization intensities using the SOIL-SOILN modelsSoil Use Mgnt.77984Google Scholar
  7. Bergström, L., Johnsson, H., Torstensson, G. 1991Simulation of soil nitrogen dynamics using the SOILN modelFert. Res.27181188CrossRefGoogle Scholar
  8. Blake, G.R., Hartge, K.H. 1986

    Bulk density

    Klute, A. eds. Methods of Soil Analysis. Part 1 2nd ed., Agron. Monogr. 9ASA and SSSAMadison, WI364367
    Google Scholar
  9. Borg, G.Ch., Jansson, P.E., Linden, B. 1990Simulated and measured nitrogen conditions in a manured and fertilized soilPlant Soil121251267CrossRefGoogle Scholar
  10. Bumb, B.L. 1989Global Fertilizer Perspective1960–1995. Technical Bulletin T-35International Fertilizer Development Center (IFDC), Muscle ShoalsAlabamaGoogle Scholar
  11. Campbell, G. 1974A simple method for determining unsaturated conductivity from moisture retention dataSoil Sci.117311314Google Scholar
  12. Chin, W., Kroontje, W. 1963Urea hydrolysis and subsequent loss of ammoniaSoil Sci. Soc. Am. Proc.27316319CrossRefGoogle Scholar
  13. Christianson, C.B., Vlek, P.L.G. 1991

    Alleviating soil fertility constraints to food production in West Africa: Efficiency of nitrogen fertilizer applied to food crops

    Uzo, A.N. eds. Alleviating Soil Fertility Constraints to Increased Crop Production in West AfricaKluwer Academic Publishers, in cooperation with IFDCDordrecht/Boston/London
    Google Scholar
  14. Clay, D.E., Clapp, C.E., Linden, D.R., Molina, J.A.E. 1985aNitrogen-tillage-residue-management. I. Calibration of potential rate of nitrification by model simulationSoil Sci. Soc. Am. J.49322325CrossRefGoogle Scholar
  15. Clay, D.E., Clapp, C.E., Linden, D.R., Molina, J.A.E. 1985bNitrogen-tillage-residue-management. II. Simulating soil and plant behavior by the model NCSWAPPlant Soil846777CrossRefGoogle Scholar
  16. Desmond, E.D., Ward, A.D. 2000ADAPT: Agricultural Drainage and Pesticide Transport model. User manual. Version 5.1Department of Agricultural Engineering, Ohio State UniversityColumbus, OhioGoogle Scholar
  17. Desmond, E.D., Ward, A.D., Fausey, N.R. 1995Nutrient component evaluation of the ADAPT water management modelASAE Publication 199552130Google Scholar
  18. Fofana, B., Breman, H., Carsky, R.J., Van Reuler, H., Tamelokpo, A.F., Gnakpenou, K.D. 2004Using mucuna and P fertilizer to increase maize grain yield and N fertilizer use efficiency in the coastal savanna of TogoNutr. Cycl. Agroecosyst.68213222CrossRefGoogle Scholar
  19. Fried, M., Tanji, K., Pol, R.M. 1976Simplified long-term concept for evaluating leaching of nitrogen from agricultural landJ. Environ. Qual.2918131820Google Scholar
  20. Gee, G.H., Bauder, J.W. 1986

    Particle size analysis

    Klute, A. eds. Methods of Soil Analysis. Part 1 2nd ed., Agron. Monogr. 9ASA and SSSAMadison, WI383411
    Google Scholar
  21. Hutson, J.L. 1986Water retentivity of some South African soils in relation to particle size criteria and bulk densityS. Afr. J. Plant Soil.3151155Google Scholar
  22. Hutson, J.L., Wagenet, R.J. 1991Simulating nitrogen dynamics in soils using a deterministic modelSoil Use Mgnt.77478Google Scholar
  23. Hutson, J.L., Wagenet, R.J. 1992LEACHMN: Leaching Estimation And Chemistry Model: A process-based model of water and solute movementtransformations, plant uptakeand chemical reactions in the unsaturated zone. Version 3Dept of Soil, Crop, and Atmospheric Sciences Research series 92–3. Cornell Univ.Ithaca, NY, USAGoogle Scholar
  24. IFDC (International Fertilizer Development Center)1993Annual ReportMuscle ShoalsAlabama, USAGoogle Scholar
  25. IFDC (International Fertilizer Development Center)1994Annual ReportMuscle ShoalsAlabama, USAGoogle Scholar
  26. IITA (International Institute of Tropical Agriculture)1982Automated and Semi-automated Methods for soil and plant analysis. Manual series 7IITAIbadan, NigeriaGoogle Scholar
  27. Inskeep, W.P., Wraith, J.P., Synder, R.D., Macur, R.E., Gaber, H.M. 1996Input parameter and resolution effects on prediction of solute transportJ. Environ. Qual.24453462CrossRefGoogle Scholar
  28. Jabro, J.D., Lotse, J.D., Fritton, D.D., Baker, D.E. 1994Estimation of preferential movement of bromide tracer under field conditionsJ. Hydrol.1566171CrossRefGoogle Scholar
  29. Jansson, P., Andersson, R. 1988Simulation of runoff and nitrate leaching from an agricultural district in SwedenJ. Hydrol.993347CrossRefGoogle Scholar
  30. Jemison J.M. Jr. 1991. Nitrate leaching from soil measured with zero-tension pan lysimeters as influenced by nitrogen fertilizer rate and manure application: Field estimates and model predictions. PhD dissertation. Pennsylvania State Univ, Univ. Park.Google Scholar
  31. Jemison, J.M.,Jr., Fox, R.H. 1992Estimation for zero-tension pan lysimeter collection efficiencySoil Sci.1548594Google Scholar
  32. Jemison, J.M.,Jr., Jabro, J.D., Fox, R.H. 1994aEvaluation of LEACHMN: Simulation of cumulative drainagebromide leaching, and corn bromide uptakeAgron. J.86843851CrossRefGoogle Scholar
  33. Jemison, J.M.,Jr., Jabro, J.D., Fox, R.H. 1994bEvaluation of LEACHMN: Simulation of nitrate leaching from nitrogen-fertilized and manured cornAgron. J.86852859CrossRefGoogle Scholar
  34. Johnsson, H., Bergström, L., Jansson, P., Paustian, K. 1987Simulated nitrogen dynamics and losses in a layered agricultural soilAgric. Ecosyst. Environ.18333356CrossRefGoogle Scholar
  35. Kladivko, E.J., Scoyoc, G.E., Monke, E.J., Oates, K.M., Pask, W. 1991Pesticide and nutrient movement into subsurface tile drains on a silt loam soil in IndianaJ. Environ. Qual.20264271Google Scholar
  36. Klute, A. 1986

    Water retention: laboratory methods

    Klute, A. eds. Methods of Soil Analysis. Part 1 2nd ed. Agron. Monogr. 9ASA and SSSAMadison, WI635661
    Google Scholar
  37. Klute, A., Dirksen, C. 1986

    Hydraulic conductivity and diffusivity: laboratory methods

    Klute, A. eds. Methods of Soil Analysis. Part 1 2nd ed. Agron. Monogr. 9ASA and SSSAMadison, WI687734
    Google Scholar
  38. Lamouroux, M. 1969Carte pédologique du Togo au 1/1000000Paris, Office de la Recherche Scientifique et Technique Outre-merCentre ORSTOM de LoméTogoGoogle Scholar
  39. Loague, K., Green, R.E. 1991Statistical and graphical methods for evaluating solute transport models: Overview and applicationJ. Contam. Hydrol.75173CrossRefGoogle Scholar
  40. Lotse, E.G., Jabro, J.D., Simmons, K.E., Baker, D.E. 1992Simulation of nitrogen dynamics and leaching from arable soilsJ. Contam. Hydrol.10183196CrossRefGoogle Scholar
  41. Louette, D. 1988Synthèse des travaux de recherche sur la fertilité des terres de barre au Bénin et au TogoCIRAD-DSAMontpellier, France34Google Scholar
  42. Magdoff, F.R., Ross, D., Amadon, J. 1984A soil test for nitrogen availability to cornSoil Sci. Soc. Am. J.4813011304CrossRefGoogle Scholar
  43. Molina, J.A.E., Clapp, C.E., Shaffer, M.J., Chichester, F.W., Larson, W.E. 1983NCSOIL, a model of nitrogen and carbon transformations in soil: description, calibration, and behaviorSoil Sci. Soc. Am. J.478591CrossRefGoogle Scholar
  44. Pieri, C. 1989Fertilité des terres des savanes. Bilan de trente ans de recherche et de développement agricole au sud du SaharaCIRADFrance444Google Scholar
  45. Pennell, K.D., Hornsby, A.G., Jessup, R.E., Rao, P.S.C. 1990Evaluation of five simulation models for predicting aldicarb and bromide behavior under field conditionsWater Resour. Res.2626792693CrossRefGoogle Scholar
  46. Prunty, L., Montgomery, B.R. 1991Lysimeter study of nitrogen fertilizer and irrigation rate on quality of recharge water and corn yieldJ. Environ. Qual.20373380Google Scholar
  47. Ramos, C., Carbonell, E.A. 1991Nitrate leaching and soil moisture prediction with the LEACHMN modelFert. Res.27171180CrossRefGoogle Scholar
  48. Randall, G.W., Evans, S.D., Iragavaparu, T.K. 1997Long-term P and K applications: II. Effect on corn and soybean yields and plant P and K concentrationsJ. Prod. Agric.10572580Google Scholar
  49. Raunet, M. 1973Contribution a l’étude pédologique des terres de barre du Dahomey et du TogoAgron. Trop.2810491069Google Scholar
  50. Rawls W.J. and Brakensiek D.L. 1985. Agricultural management effects on soil water retention. In: Decoursey D.G. (ed.), 1985. Proceedings of the 1983 Natural Resources Modeling Symposium. US Department of Agriculture, Agricultural Research Service, ARS-30, 532 p.Google Scholar
  51. Roth, G.W., Fox, R.H. 1990Soil nitrate accumulations following corn fertilized at various N rates in PennsylvaniaJ. Environ. Qual.19243248Google Scholar
  52. Saragoni, H., Olivier, R., Poss, R. 1991Dynamique et lixiviation des éléments minérauxAgron. Trop.45259273Google Scholar
  53. SAS Institute2003SAS User’s GuideSAS InstCary, NCGoogle Scholar
  54. Shepherd, K.D., Soule, M.J. 1998Soil fertility management in west Kenya: dynamic simulation of productivity, profitability and sustainability at different resource endowment levelsAgric. Ecosyst. Environ.71131145CrossRefGoogle Scholar
  55. Smith, W.N., Reynolds, W.D., Jong, R., Clemente, R.S., Topp, E. 1995Water flow through intact soil columns: measurement and simulation using LEACHMNJ. Environ. Qual.24874891Google Scholar
  56. Snyder, J.D., Trofymow, J.A. 1984A rapid accurate wet oxidation diffusion procedure for determining organic carbon and inorganic carbon in plant and soil samplesCmmun. Soil Sci. Plant Anal.15587597CrossRefGoogle Scholar
  57. Sogbedji, J.M. 1986Alimentation en eau du maïs dans la région maritime et influence de la fumure potassique sur la culture au Togo méridionalMémoire d’Ingénieur AgronomeUniversité de Lomé, Ecole Supérieure d’AgronomieLomé, TogoGoogle Scholar
  58. Sogbedji, J.M., Es, H.M., Hutson, J.L. 2001aN fate and transport under variable cropping history and fertilizer rate on loamy sand and clay loam soils: Calibration of the LEACHMN modelPlant Soil2295770CrossRefGoogle Scholar
  59. Sogbedji, J.M., Es, H.M., Hutson, J.L., Geohring, L.D. 2001bN fate and transport under variable cropping history and fertilizer rate on loamy sand and clay loam soils: Performance of LEACHMN using different calibration scenariosPlant Soil2297182CrossRefGoogle Scholar
  60. Sogbedji, J.M., Es, H.M., Yang, C.L., Geohring, L.D., Magdoff, F.R. 2000Nitrate leaching and nitrogen budget as affected by maize nitrogen rate and soil typeJ. Environ. Qual.2918131820Google Scholar
  61. Tossah B.K. 2000. Influence of soil properties and organic inputs on phosphorus cycling in herbaceous legume-based cropping systems in the West African derived savanna. PhD Thesis No. 428, K.U.Leuven, Belgium.Google Scholar
  62. Bosch, H., Gitari, J.N., Ogaro, V.N., Maobe, S., Vlaming, J. 1998Monotoring nutrient flows and economic performance in African farming systems (NUTMON). III. Monitoring nutrient flows and balances in three districts in KenyaAgric. Ecosyst. Environ.716380CrossRefGoogle Scholar
  63. Linden, A.M.A., Veen, J.A., Frissel, M. 1987Modeling soil organic matter levels after long-term applications of crop residues, and farmyard and green manuresPlant Soil102128CrossRefGoogle Scholar
  64. Es, H.M., Steenhuis, T.S., Geohring, L.D., Vermeulen, J., Boll, J. 1991

    Movement of surface-applied and soil-embodied chemicals to drainage lines in a well-structyred soil

    Gish, T.J.Shirmohammadi, A. eds. Preferential FlowASAESt. JosephMI5967
    Google Scholar
  65. Es, H.M., Es, C.L. 1993Spatial nature of randomization and its effect on the outcome of field experimentsAgron. J.85420428CrossRefGoogle Scholar
  66. Watts, D.G., Hanks, R.J. 1978A soil–water–nitrogen model for irrigated corn on sandy soilsSoil Sci. Soc. Am. J.42492499CrossRefGoogle Scholar
  67. Willmott, C.J. 1981On the validation of modelsPhys. Geogr.2184194Google Scholar
  68. Wolf, J., Keulen, H. 1989Modeling long-term crop response to fertilizer and soil nitrogen. II. Comparison with field resultsPlant Soil1202738Google Scholar
  69. Yiridoe, E.K., Veroney, R.P., Weersink, A. 1997Impact of alternative farm management practices on nitrogen pollution of groundwater: Evaluation and application of CENTURY modelJ. Environ. Qual.2612551263CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Jean M. Sogbedji
    • 1
    • 2
    • 3
  • Harold M. van Es
    • 2
  • Kofi L. Agbeko
    • 1
  1. 1.Ecole Supérieure d’AgronomieUniversité de LoméLoméWest Africa
  2. 2.Department of Crop and Soil SciencesCornell UniversityIthacaUSA
  3. 3.Jean M. SogbedjiLomé 05West Africa

Personalised recommendations