Nutrient Cycling in Agroecosystems

, Volume 73, Issue 2–3, pp 201–212 | Cite as

Intercropping of Wheat and Pea as Influenced by Nitrogen Fertilization

  • Bhim B. Ghaley
  • H. Hauggaard-Nielsen
  • H. Høgh-Jensen
  • E. S. Jensen


The effect of sole and intercropping of field pea (Pisum sativum L.) and spring wheat (Triticum aestivum L.) on crop yield, fertilizer and soil nitrogen (N) use was tested on a sandy loam soil at three levels of urea fertilizer N (0, 4 and 8 g N m−2) applied at sowing. The 15 N enrichment and natural abundance techniques were used to determine N accumulation in the crops from the soil, fertilizer and symbiotic N2 fixation. Intercrops of pea and wheat showed maximum productivity without the supply of N fertilizer. Intercropping increased total dry matter (DM) and N yield, grain DM and N yield, grain N concentration, the proportion of N derived from symbiotic N2 fixation, and soil N accumulation. With increasing fertilizer N supply, intercropped and sole cropped wheat responded with increased yield, grain N yield and soil N accumulation, whereas the opposite was the case for pea. Fertilizer N enhanced the competitive ability of intercropped wheat recovering up to 90% of the total intercrop fertilizer N acquisition and decreased the proportion of pea in the intercrop, but without influencing the total intercrop grain yield. As a consequence, Land Equivalent Ratios calculated on basis of total DM production decreased from a maximum of 1.34 to as low as 0.85 with increased fertilizer N supply. The study suggests that pea–wheat intercropping is a cropping strategy that use N sources efficiently due to its spatial self-regulating dynamics where pea improve its interspecific competitive ability in areas with lower soil N levels, and vice versa for wheat, paving way for future option to reduce N inputs and negative environmental impacts of agricultural crop production.


Fertilizer nitrogen use Nitrogen fixation 15N Isotope methodology Intercropping Pea Wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andersen, M.K., Hauggaard-Nielsen, H., Ambus, P., Jensen, E.S. 2004Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercropsPlant Soil266273287Google Scholar
  2. 2.
    Altieri, M.A. 1999The ecological role of biodiversity in agroecosystemsAgr. Ecosyst. Environ.741931CrossRefGoogle Scholar
  3. 3.
    Berntsen, J., Hauggaard-Nielsen, H., Olesen, J.E., Petersen, B.M., Jensen, E.S., Thomsen, A. 2004Modelling dry matter production and resource use in intercrops of pea and barleyField Crop Res.886983Google Scholar
  4. 4.
    Chalk, P.M. 1998Dynamics of biologically fixed N in legume-cereal rotations: A reviewAust. J. Agric. Res.49303316Google Scholar
  5. 5.
    Cibella R., Gristina L., Sarno R. and Trapani P. 1995. Preliminary studies of durum wheat and lentil intercropping in a semi-arid environment. In: European Association for Grain Legume Research (eds), Proceedings of the 2nd European Conference on Grain Legumes: Improving Production and Utilisation of Grain Legumes. Copenhagen, Denmark, pp. 187.Google Scholar
  6. 6.
    Danso, S.K.A., Zapata, F.H.G., Fried, M. 1987Nitrogen fixation in fababeans as affected by plant population density in sole and intercropped systems with barleySoil Biol. Biochem.19411415CrossRefGoogle Scholar
  7. 7.
    Wit, C.T., Bergh, J.P. 1965Competition between herbage plantsNeth. J. Agric. Sci.13212221Google Scholar
  8. 8.
    Fukai, S., Trenbath, B.R. 1993Processes determining intercrop productivity and yields of component cropsField Crop Res.34247271Google Scholar
  9. 9.
    Hauggaard-Nielsen, H., Jensen, E.S. 2001aEvaluating pea and barley cultivars for complementarity in intercropping at different levels of soil N availabilityField Crop Res.72185196Google Scholar
  10. 10.
    Hauggaard-Nielsen, H., Ambus, P., Jensen, E.S. 2001bInterspecific competition, N use and interference with weeds in pea–barley intercroppingField Crop Res.70101109Google Scholar
  11. 11.
    Hauggaard-Nielsen, H., Ambus, P., Jensen, E.S. 2001cTemporal and spatial distribution of roots and competition for nitrogen in pea–barley intercrops – a field study employing 32P-techniquePlant Soil2366374CrossRefGoogle Scholar
  12. 12.
    Hauggaard-Nielsen, H., Ambus, P., Jensen, E.S. 2003The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barleyNutr. Cycl. Agroecosyst.65289300CrossRefGoogle Scholar
  13. 13.
    Izaurralde, R.C., McGill, W.B., Juma, N.G. 1992Nitrogen fixation efficiency, interspecies N transfer and root growth in barley-field pea intercrop on a Black Chernozemic soilBiol. Fertil. Soils131116CrossRefGoogle Scholar
  14. 14.
    Jensen, E.S. 1987Seasonal patterns of growth and nitrogen fixation in field-grown peaPlant Soil1012937Google Scholar
  15. 15.
    Jensen, E.S. 1996aGrain yieldsymbiotic N2 fixation and interspecific competition for inorganic N in pea–barley intercropsPlant Soil1822538Google Scholar
  16. 16.
    Jensen, E.S. 1996bRhizodeposition of N by pea and barley and its effect on soil N dynamicsSoil Biol. Biochem.286571CrossRefGoogle Scholar
  17. 17.
    Jensen E.S. 1997. The role of grain legume N2 fixation in the nitrogen cycling of temperate cropping systems. D.Sc. Thesis,Risø National laboratory, R-885 (EN), RoskildeDenmark pp. 14Google Scholar
  18. 18.
    Kanayama, Y., Watanabe, I., Yamamoto, Y. 1990Inhibition of nitrogen fixation in soyabean plants supplied with nitrate. In: Nitrite accumulation and formation of nitrosylleghemoglobin in nodulesPlant Cell Physiol.31341346Google Scholar
  19. 19.
    Karpenstein-Machan, M., Stuelpnagel, R. 2000Biomass yield and nitrogen fixation of legumes monocropped and intercropped with rye and rotation effects on subsequent maize cropPlant Soil218215232CrossRefGoogle Scholar
  20. 20.
    Mahon, J.D., Child, J.J. 1979Growth response of inoculated peas (Pisum sativum) to combined nitrogenCan. J. Bot.5716871693Google Scholar
  21. 21.
    Martin, M.P.L.D., Snaydon, R.W. 1982Root and shoot interactions between barley and field beans when intercroppedJ. Appl. Ecol.19263272Google Scholar
  22. 22.
    Mead, R., Willey, R.W. 1980The concept of ‘Land Equivalent Ratio’ and advantages in yields from intercroppingExp. Agric.16217228Google Scholar
  23. 23.
    Midmore, D.J. 1993Agronomic modification of resource use and intercrop productivityField Crop Res.34357380Google Scholar
  24. 24.
    Ofori, F., Stern, W.R. 1987Cereal-legume intercropping systemsAdv. Agron.414190Google Scholar
  25. 25.
    Parsons, R., Stanforth, A., Raven, J.A., Sprent, J.I. 1993Nodule growth and activity may be regulated by a feedback mechanism involving phloem nitrogenPlant Cell Environ.16125136Google Scholar
  26. 26.
    Pingali, P.L. eds. 1999CIMMYT 1998–1999 World Wheat Facts and Trends. Global Wheat Research in a Changing World: Challenges and AchievementsCIMMYTMexico, D.F.154Google Scholar
  27. 27.
    SAS1990SAS Procedure GuideVersion 63SAS institute Inc.Gary, NC, USA705Google Scholar
  28. 28.
    Shearer, G., Kohl, D.H. 1986Nitrogen fixation in field settings: estimations based on natural 15N abundanceAust. J. Plant Physiol.13699756Google Scholar
  29. 29.
    Stevenson, F.C., Kessel, C. 1997Nitrogen contribution of pea residue in a hummocky terrainSoil Sci. Soc. Am. J.61494503CrossRefGoogle Scholar
  30. 30.
    Tobita, S., Ito, O., Matsunaga, R., Rao, T.P., Rego, T.J., Johansen, C., Yoneyama, T. 1994Field evaluation of nitrogen fixation and use of nitrogen fertiliser by sorghum/pigeon pea intercropping on an alfisol in the Indian semi-arid TropicsBiol. Fertil. Soils17241248CrossRefGoogle Scholar
  31. 31.
    Trenbath, B.R. 1976Plant interactions in mixed crop communitiesPapendick, R.I.Sanchez, P.A.Triplett, G.B. eds. Multiple Cropping SystemsASA Special Pub No. 27USA129169Google Scholar
  32. 32.
    Trenbath, B.R. 1993Intercropping for the management of pests and diseasesField Crop Res.34381405Google Scholar
  33. 33.
    Unkovich, M.J., Pate, J.S., Sanford, P., Armstrong, E.L. 1994Potential precision of the δ15N natural abundance method in field estimates of nitrogen fixation by crop and pasture legumes in south-west AustraliaAust. J. Agric. Res.45119132Google Scholar
  34. 34.
    Vandermeer, J. 1989The Ecology of IntercroppingCambridge University PressCambridgeUKGoogle Scholar
  35. 35.
    Vessey, J.K., Waterer, J. 1992In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules: recent developmentsPhysiol. Plant84171176CrossRefGoogle Scholar
  36. 36.
    Kessel, C., Hartley, H. 2000Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?Field Crop Res.65165181Google Scholar
  37. 37.
    Wahua, T.A.T., Miller, D.A. 1978Effects of intercropping on soyabean N2-fixation and plant composition on associated sorghum and soyabeanAgron. J.70192295Google Scholar
  38. 38.
    Waterer, J.G., Vessey, J.K., Stobbe, E.H., Soper, R.J. 1994Yield and symbiotic nitrogen fixation in a pea-mustard intercrop as influenced by N fertiliser additionSoil Biol. Biochem.26447453CrossRefGoogle Scholar
  39. 39.
    Willey, R.W. 1979Intercropping – its importance and research needsPart 1: Competition and Yield Advantages32110Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Bhim B. Ghaley
    • 1
  • H. Hauggaard-Nielsen
    • 2
  • H. Høgh-Jensen
    • 3
  • E. S. Jensen
    • 2
  1. 1.Renewable Natural Resources (RNR) Research CentreWestern Region – Yusipang, Council for RNR Research of Bhutan, Ministry of AgricultureThimphuBhutan
  2. 2.Biosystems DepartmentRisø National LaboratoryRoskildeDenmark
  3. 3.Department of Agricultural SciencesThe Royal Veterinary and Agricultural UniversityTaastrupDenmark

Personalised recommendations