Nutrient Cycling in Agroecosystems

, Volume 73, Issue 2–3, pp 171–179 | Cite as

Towards a Revised Coefficient for Estimating N2O Emissions from Legumes

  • Philippe RochetteEmail author
  • Henry H. Janzen


The Intergovernmental Panel on Climate Change (IPCC) standard methodology to conduct national inventories of soil N2O emissions is based on default (or Tier I) emission factors for various sources. The objective of our study was to summarize recent N2O flux data from agricultural legume crops to assess the emission factor associated with rhizobial nitrogen fixation. Average N2O emissions from legumes are 1.0 kg N ha−1 for annual crops, 1.8 kg N ha−1 for pure forage crops and 0.4 kg N ha−1 for grass legume mixes. These values are only slightly greater than background emissions from agricultural crops and are much lower that those predicted using 1996 IPCC methodology. These field flux measurements and other process-level studies offer little support for the use of an emission factor for biological N fixation (BNF) by legume crops equal to that for fertiliser N. We conclude that much of the increase in soil N2O emissions in legume crops may be attributable to the N release from root exudates during the growing season and from decomposition of crop residues after harvest, rather than from BNF per se. Consequently, we propose that the biological fixation process itself be removed from the IPCC N2O inventory methodology, and that N2O emissions induced by the growth of legume crops be estimated solely as a function of crop residue decomposition using an estimate of above- and below-ground residue inputs, modified as necessary to reflect recent findings on N allocation.


Biological N fixation greenhouse gases IPCC Nitrous oxide Rhizobium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoyama, M., Nozawa, T. 1993Microbial biomass nitrogen and mineralization-Immobilization processes of nitrogen in soils incubated with various organic materialsSoil Sci. Plant Nutr.392332Google Scholar
  2. Arrese-Igor, C., Garcia-Plazaola, J.I., Hernandez, A., Aparicio-Tejo, P.M. 1990Effect of low nitrate supply to nodulated Lucerne on time course of activities of enzymes involved in inorganic nitrogen metabolismPhysiol. Plant80185190CrossRefGoogle Scholar
  3. Baggs, E.M., Rees, R.M., Smith, K.A., Winten, A.J.A. 2000Nitrous oxide emission from soils after incorporating crop residuesSoil Use Manage168287Google Scholar
  4. Bertelsen, F., Jensen, E.S. 1992Gaseous nitrogen losses from field plots grown with pea (Pisum sativum L.) or spring barley (Hordeum vulgare L.) estimated by 15N mass balance and acethylene inhibition techniquesPlant Soil174195209Google Scholar
  5. Bonish, P.M., Steele, K.W., Neville, F.J. 1991Denitrifying and symbiotic characteristics of lotus rhizobia from two New Zealand soilsN. Z. J. Agric. Res.34221226Google Scholar
  6. Bouwman, A.F. 1996Direct emissions of nitrous oxide from agricultural soilsNutr. Cycl. Agroenviron.465370Google Scholar
  7. Bouwman A.F., Boumans L.J.M. and Batjes N.H. 2002a. Emissions of N2O and NO from fertilized fields: summary of available data. Global Biogeochem. Cycles 16: 1058doi:10.1029/2001GB001811. (Data available at:
  8. Bouwman, A.F., Boumans, L.J.M., Batjes, N.H. 2002bModeling global annual N2O and NO Emissions from fertilized fields. Global BiogeochemCycles161080doi:10.1029/2001GB001812Google Scholar
  9. Bremner, J.M., Robbins, S.G., Blackmer, A.M. 1980Seasonal variability in emission of nitrous oxide from soilGeophys. Res. Lett.7641644Google Scholar
  10. Bryan, B.A., Shearer, G., Skeeters, J.L., Kohl, D.H. 1985Denitrification by intact soybean nodules in relation to natural 15N enrichment of nodulesCan. J. Soil Sci.65261265CrossRefGoogle Scholar
  11. Breitenbeck, G.A., Bremner, J.M. 1989Ability of free-living Bradyrhizobium japonicum to denitrify nitrate in soilsBiol. Fertil. Soils7219224CrossRefGoogle Scholar
  12. Chen, G.X., Cabrera, M.L., Zhang, L., Wu, J., Shi, Y., Yu, W.T., Shen, S.M. 2002Nitrous oxide emissions from upland crop–soil systems in north eastern ChinaNutr. Cycl. Agroenviron.62241247Google Scholar
  13. Chen, G.X., Huang, B., Xu, H., Zhang, Y., Huang, G.H., Yu, K.W., Hou, A.X., Du, R., Han, S.J., vanCleemput, O. 2000Nitrous oxide emissions from terrestrial ecosystems in ChinaChemosphere Global Change Sci.2373378CrossRefGoogle Scholar
  14. Conrad, R., Seiler, W., Bunse, G. 1983Factors influencing the loss of fertilizer nitrogen in the atmosphere as N2OJ. Geophys. Res.8867096718CrossRefGoogle Scholar
  15. Corre, M.D., Kessel, C., Pennock, D.J. 1996Landscape and seasonal patterns of nitrous oxide emissions in a semiarid regionSoil Sci. Soc. Am. J.6018061815CrossRefGoogle Scholar
  16. Duxbury, J.M., Bouldin, D.R., Terry, R.E., Tate, R.L. 1982Emissions of nitrous oxide from soilsNature298462464CrossRefGoogle Scholar
  17. Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J. 2003The nitrogen cascadeBioScience53341356Google Scholar
  18. Garcia-Plazaola, J.I., Becerril, J.M., Arrese-Igor, C., Hernandez, A., Gonzalez-Murua, C., Aparicio-Tejo, P.M. 1993aDenitrifying ability of thirteen Rhizobium meliloti strainsPlant Soil1494350Google Scholar
  19. Garcia-Plazaola, J.I., Becerril, J.M., Arrese-Igor, C., Hernandez, A., Gonzalez-Murua, C., Aparicio-Tejo, P.M. 1993bThe contribution of Rhizobium meliloti to soil denitrificationPlant Soil157207213CrossRefGoogle Scholar
  20. García-Plazaola, J. I., Arrese-Igor, C., González, A., Aparicio-Tejo, P.M., Becerril, J.M. 1996Denitrification in lucerne nodules is not involved in nitrite detoxificationPlant Soil182149155Google Scholar
  21. Gil, J.L., Fick, W.H. 2001Soil nitrogen mineralization in mixtures of eastern gamagrass with alfalfa and red cloverAgron. J.93902910CrossRefGoogle Scholar
  22. Gregorich E.G., Rochette P., vandenBygaart A.J. and Angers D.A. 2005. Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil. Till. Res. (in press).Google Scholar
  23. Ghosh, S., Majumdar, D., Jain, M.C. 2002Nitrous oxide emissions from kharif and rabi legumes grown on an alluvial soilBiol. Fertil. Soils35473478CrossRefGoogle Scholar
  24. Helgason B.L., Chantigny M.H., Drury C., Ellert B.H., Gregorich E.G., Janzen H.H., Lemke R.L., Pattey E., Rochette P. and Wagner-Riddle C. 2005. Toward improved coefficients for predicting direct N2O emissions from soil in Canadian agroecosytems. Nutr. Cycl., Agroenviron. (in press).Google Scholar
  25. Hossain, S.A., Dalal, R.C., Waring, S.A., Strong, W.M., Weston, E.J. 1996aComparison of legume-based cropping systems at WarraQueensland. I. Soil nitrogen and organic carbon accretion and potentially mineralisable nitrogenAust. J. Soil Res.34273287Google Scholar
  26. Hossain, S.A., Strong, W.M., Waring, S.A., Dalal, R.C., Weston, E.J. 1996bComparison of legume-based cropping systems at WarraQueensland. II. Mineral nitrogen accumulation and availability to the subsequent wheat cropAust. J. Soil Res.34289297Google Scholar
  27. Huang, Y., Zou, J., Zheng, X., Wang, Y., Xu, X. 2004Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratiosSoil Biol. Biochem.36973981CrossRefGoogle Scholar
  28. IPCC 1997. Greenhouse gas reference manual: revised 1996 IPCC guidelines for national greenhouse gas inventories. Reference Volume 3. J.T. Houghton, L.G. Meira FilhoB. Lin, K. Tréanton, . Mamaty, Y,. Bonduky, D.J. Briggs and B.A. Callander(eds).
  29. Jacinthe, P.A., Dick, W.A. 1997Soil Management and nitrous oxide emissions from cultivated fields in southern OhioSoil Till. Res.41221235CrossRefGoogle Scholar
  30. Janzen, H.H., Beauchemin, K.A., Bruinsma, Y., Campbell, C.A., Desjardins, R.L., Ellert, B.H., Smith, E.G. 2003The fate of nitrogen in agroecosystems: An illustration using Canadian estimatesNutr. Cycling Aroecosyst.6785102Google Scholar
  31. Jenkinson, D.A. 2001The impact of humans on the nitrogen cyclewith focus on temperate arable agriculturePlant Soil228315CrossRefGoogle Scholar
  32. Kaiser, E.-A., Kohrs, K., Kucke, M., Schnug, E., Munch, J.C., Heinemeyer, O. 1998Nitrous oxide release from arable soil: importance of perennial forage cropsBiol. Fertil. Soils283643CrossRefGoogle Scholar
  33. Kammann, C., Grunhage, L., Muller, C., Jacobi, S., Jager, H.J. 1998Seasonal variability and mitigation options for N2O emissions from differently managed grasslandsEnviron. Pollut.1179186Google Scholar
  34. Kelner, D.J., Vessey, J.K., Entz, M.H. 1997The nitrogen dynamics of 1-, 2- and 3-year stands of alfalfa in a cropping systemAgric. Ecosyst. Environ.64110Google Scholar
  35. Khan, W.D.F., Peoples, M.B., Herridge, D.F. 2002aQuantifying below-ground nitrogen of legumes. 1. Optimizing procedures for 15N shoot-labellingPlant Soil245327334CrossRefGoogle Scholar
  36. Khan, D.F., Peoples, M.B., Chalk, P.M., Herridge, D.F. 2002bQuantifying below-ground nitrogen of legumes. 2. A comparison of 15N and non isotopic methodsPlant Soil239277289CrossRefGoogle Scholar
  37. Kilian, S., Werner, D. 1996Enhanced denitrification in plots of N2-fixing faba beans compared to plots of a non-fixing legume and non-legumesBiol. Fertil. Soils217783CrossRefGoogle Scholar
  38. Larsson, L., Fern, M., Kasimir-Klemedtsson, Å., Klemedtsson, L. 1998Ammonia and nitrous oxide emissions from grass and alfalfa mulchesNutr. Cycl. Agroecosyst.514146CrossRefGoogle Scholar
  39. Lemke R.L., Goddard T.G. and Selles F. 2003. Quantifying nitrous oxide emissions resulting from the production of leguminous crops in western Canada. Final report submitted to Environment Canada, Ottawa, 27p.Google Scholar
  40. Lucinski, R., Polcyn, W., Ratajczak, L. 2002Nitrate reduction and nitrogen fixation in symbiotic association Rhizobium-legumesActa Biochem. Polon.49537546Google Scholar
  41. MacKenzie, A.F., Fan, M.X., Cadrin, F. 1998Nitrous oxide emission in three years as affected by tillagecorn-soybean-alfalfa rotations, and nitrogen fertilizationJ. Environ. Qual.27698703CrossRefGoogle Scholar
  42. Mayer, J., Buegger, F., Jensen, E.S., Schloter, M., Heß, J. 2003Estimating N rhizodeposition of grain legumes using a 15N in situ stem labelling methodSoil Biol. Biochem.352128CrossRefGoogle Scholar
  43. Mayer, J., Buegger, F., Jensen, E.S., Schloter, M., Heß, J. 2004Turnover of grain legume N rhizodeposits and effect of rhizodeposition on the turnover of crop residuesBiol. Fertil. Soils39153164CrossRefGoogle Scholar
  44. McNeill, A.M., Zhu, C., Fillery, I.R.P. 1997Use of in situ 15N-labelling to estimate the total below-ground nitrogen of pasture legumes in intact soil–plant systemsAust. J. Agric. Res.48295304Google Scholar
  45. Millar N., Ndufa J.K., Cadisch G. and Baggs E.M. 2004. Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropics. Global Biogeochem. Cycles 18.GB1032, doi:10.1029/2003GB002114.Google Scholar
  46. Misselbrook, T.H., Chadwick, D.R., Pain, B.F., Headon, D.M. 1998Dietary manipulation as a means of decreasing N losses and methane emissions and improving herbage uptake following application of pig slurry to grasslandJ. Agric. Sci.130183191CrossRefGoogle Scholar
  47. Munns, D.N. 1977Mineral nutrition and the legume symbiosisHardy, R.W.F.Gibson, A.H. eds. A treatise on dinitrogen fixation. Section IV, Agronomy and ecologyWileyNew York353392Google Scholar
  48. O’Hara, G.W., Daniel, R.M., Steele, K.W., Bonish, P.M. 1984Nitrogen losses from soils caused by Rhizobium-dependent denitrificationSoil Biol. Biochem.16429431Google Scholar
  49. O’Hara, G.W., Daniel, R.M. 1985Rhizobial denitrification: a reviewSoil Biol. Biochem.1719Google Scholar
  50. Pu, G., Saffigna, P.G., Strong, W.M. 1999Potential for denitrification in cereal soils of northern Australia after legume or grass-legume pasturesSoil Biol. Biochem.31667675CrossRefGoogle Scholar
  51. Pu, G., Strong, W.M., Saffigna, P.G., Doughton, J. 2001Denitrification , leaching, and immobilisation of applied 15N following legume and grass pastures in a semi-arid climate in AustraliaNut. Cycling Agroecosyst.59199207Google Scholar
  52. Rasse, D.P., Smucker, A.J.M., Schabenberger, O. 1999Modifications of soil nitrogen pools in response to alfalfa roots systems and shoot mulchAgron. J.91471477CrossRefGoogle Scholar
  53. Robertson, G.P., Paul, E.A., Harwood, R.R. 2000Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphereScience28919221925CrossRefGoogle Scholar
  54. Rochette, P., Angers, D.A., Bélanger, G., Chantigny, M.H., Prévost, D., Lévesque, G. 2004Emissions of N2O from alfalfa and soybeans crops in Eastern CanadaSoil Sci. Soc. Am. J.68493506Google Scholar
  55. Rosen, A., Lindgren, P.-E., Ljunggren, H. 1996Denitrification by Rhizobium meliloti. 1. Studies of free-living cells and nodulated plantsSwed. J. Agric. Res.26105113Google Scholar
  56. Šimek, M., Elhottová, D., Klimeš, F., Hopkins, D.W. 2004Emissions of N2O and CO2denitrification measurements and soil properties in red clover and rye grass standsSoil Biol. Biochem.36921Google Scholar
  57. Smil, V. 2002aNitrogen and food production: proteins for human dietsAmbio31126131Google Scholar
  58. Smil, V. 2002bThe earth’s biosphereThe MIT PressCambridge346Google Scholar
  59. Smith, G.B., Smith, M.S. 1986Symbiotic and free-living denitrification by Bradyrhizobium japonicum Soil Sci. Soc. Am. J.50349354Google Scholar
  60. Ta, T.C., MacDowall, F.D.H., Faris, M.A. 1986Excretion of nitrogen assimilated from N2 fixed by nodulated roots of alfalfa (Medicago sativa) Can. J. Bot.6420632067CrossRefGoogle Scholar
  61. Thyme M. and Ambus P. 2004. N2O emission from grass-clover swards is largely unaffected by recently fixed N2. DARCOFeNews No.1,( emision.html).
  62. Berkum, P., Keyser, H.H. 1985Anaerobic growth and denitrification among different serogroups of soybean rhizobiaAppl. Environ. Microbiol.49772777Google Scholar
  63. Weerden, T.J., Sherlock, R.R., Williams, P.H., Cameron, K.C. 1999Nitrous oxide emissions and methane oxidation by soil following cultivation of two different leguminous pasturesBiol. Fertil. Soils305260Google Scholar
  64. Veldkamp, E., Keller, M., Nuñez, M. 1998Effects of pasture management on N2O and NO emissions from soils in the humid tropics of Costa RicaGlobal Biogeochem. Cycles127179CrossRefGoogle Scholar
  65. Velthof, G.L., Beusichem, M.L., Oenema, O. 1998Mitigation of nitrous oxide emissions from dairy farming systemsEnviron. Pollut.102173178CrossRefGoogle Scholar
  66. Velthof, G.L., Oenema, O. 1997Nitrous oxide emission from dairy farming systems in the NetherlandsNeth. J. Agric.Sci.45347360Google Scholar
  67. Vinther, F.P., Jensen, E.S. 2000Estimating legume N2 fixation in grass-clover mixtures of a grazed organic cropping system using two 15N methodsAgric. Ecosyst. Environ.78139147Google Scholar
  68. Wagner-Riddle, C., Thurtell, G.W., Kidd, G.K., Beauchamp, E.G., Sweetman, R. 1997Estimates of nitrous oxide emissions from agricultural fields over 28 monthsCan. J. Soil Sci.77135144Google Scholar
  69. Walley, F.L., Tomm, G.O., Matus, A., Slinkard, A.E., van Kessel, C. 1996Allocation and cycling of nitrogen in an alfalfa-bromegrass swardAgron. J.88834843CrossRefGoogle Scholar
  70. Wang, Y.-P., Meyer, C.P., Galbally, I.E., Smith, C.J. 1997Comparisons of field measurements of carbon dioxide and nitrous oxide fluxes with model simulations for a legume pasture in southern AustraliaJ. Geophys. Res.1022801328024Google Scholar
  71. Whalen, S.C., Phillips, R.L., Fisher, E.N. 2000Nitrous oxide emission from an agricultural field fertilized with liquid lagoonal swine effluentGlobal Biogeochem. Cycl.14545558Google Scholar
  72. Wheatley, R., Ritz, K., Griffiths, B. 1990Microbial biomass and mineral N transformations in soil planted with barley, ryegrass or turnipPlant Soil127157167CrossRefGoogle Scholar
  73. Williams, D.L., Ineson, P., Coward, P.A. 1999Temporal variations in nitrous oxide fluxes from urine-affected grasslandSoil Biol. Biochem.31779788CrossRefGoogle Scholar
  74. Yang, L., Cai, Z. 2005The effect of growing soybean (Glycine max L.) on N2O emission from soilSoil Biol. Biochem.3712051209Google Scholar
  75. Yang, X.M., Drury, C.F., Reynolds, W.D., McKenney, D.J., Tan, C.S., Zhang, T.Q., Fleming, R.J. 2002Influence of composts and liquid pig manure on CO2N2O emissions from a clay loam soilCan. J. Soil Sci.82395401Google Scholar
  76. Zhong, Z., Lemke, R.L., Nelson, L.M. 2004Quantifying the N2O emissions associated with N2 fixation by pulse cropsAgriculture and Agri-Food CanadaOttawaAnnual report to the BGSS program.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Agriculture and Agri-Food CanadaSainte-FoyCanada
  2. 2.Agriculture and Agri-Food CanadaLethbridgeCanada

Personalised recommendations