Nutrient Cycling in Agroecosystems

, Volume 72, Issue 1, pp 51–65 | Cite as

Trends in Global Nitrous Oxide Emissions from Animal Production Systems

  • Oene Oenema
  • Nicole Wrage
  • Gerard L. Velthof
  • Jan Willem van Groenigen
  • Jan Dolfing
  • Peter J. Kuikman
Article

Abstract

Wastes from animal production systems contribute as much as 30–50% to the global N2O emissions from agriculture, but relatively little attention has been given on improving the accuracy of the estimates and on developing mitigation options. This paper discusses trends and uncertainties in global N2O emission from animal waste and discusses possible mitigation strategies, on the basis of literature data and results of simple calculations. Total N2O emissions from animal production systems are estimated at 1.5 Tg. Dung and urine from grazing animals deposited in pastures (41%), indirect sources (27%), animal wastes in stables and storages (19%), application of animal wastes to land (10%) and burning of dung (3%) are the five sources distinguished. Most sensitive factors are N excretion per animal head, the emission factor for grazing animals and that for indirect emissions. Total N2O emissions are related to type and number of animals, N excretion per animal, and the management of animal wastes. Projections by FAO suggest that animal numbers will increase by 40% between 2000 and 2030. Mean N excretion per animal head will probably also increase. These trends combined suggest a strong increase in total N2O emission from animal production systems in the near future, which is opposite to the objectives of the Kyoto Protocol. Improving N use efficiency, combined with anaerobic digestion of animal wastes for bio fuel generation are the most feasible options for mitigation, but these options seem insufficient to reverse the trend of increasing N2O emission. In conclusion, animal production systems are a major and increasing source of N2O in agriculture. The uncertainties in the emission estimates are large, due to the many complexities involved and the lack of accurate data, especially about N excretion and the management of animal wastes in practice. Suggestions are made how to increase the accuracy of the emission estimates and to mitigate N2O emission from animal production systems.

Key words

Animal number Animal waste Dung and urine Global budget Nitrogen excretion Nitrous oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amon, B., Amon, Th, Boxberger, J., Alt, C. 2001Emissions of NH3N2O and CH4 from diary cows housed in a farmyard waste tying stall (housing, waste storagewaste spreading). NutrCycl. Agroecosyst.60103113CrossRefGoogle Scholar
  2. Amon, B., Moitzi, G., Schimpl, M., Kryvoruchko, V., Wagner-Alt, C. 2002MethaneNitrous Oxide and Ammonia Emissions from Management of Liquid WastesUniversity of Agricultural Sciences, ILUETViennaAustria238Google Scholar
  3. Bouwman A.F., der Hoek K.W., Eickhout B. and Soenario I. 2003. Changes in world ruminant production systems between 1970 and 2030. In: Brouwer F.B. and Ball B. (eds), Transitions in Agricultural Land Use Patterns. Wageningen, December 2–4, 2003.Google Scholar
  4. Bouwman, A.F., Lee, D.S., Asman, W.A.H., Dentener, F.J., der Hoek, K.W., Olivier, J.G.J. 1997A global high-resolution emission inventory for ammoniaGlobal Biogeochem. Cycles11561587CrossRefGoogle Scholar
  5. Bruinsma, J.E. 2003World Agriculture: Towards 2015/2030An FAO perspective. Earthscan PublicationsLondonGoogle Scholar
  6. Clemens, J., Huschka, A. 2001The effect of biological oxygen demenad of cattle slurry and soil moisture on nitrous oxide emissionsNutr. Cycl. Agroecosyst.59193198CrossRefGoogle Scholar
  7. De Klein, C.A.M., Barton, L., Sherlock, R.R., Li, Z., Littlejohn, R.P. 2003Estimating a nitrous oxide emission factor for animal urine from New Zealnd pastoral soilsAust. J. Soil Res.41381399CrossRefGoogle Scholar
  8. Dewes, T. 1996Effect of pH, temperatureamount of litter and storage density on ammonia emissions from stable wasteJ. Agric. Sci.127501509Google Scholar
  9. Dundee, L., Hopkins, D.W. 2001Different sensitivities to oxygen of nitrous oxide production by Nitrosomonas europaeaNitrosolobus multiformisSoil Biol. Biochem.3315631565CrossRefGoogle Scholar
  10. FAO 2003. FAOSTAT. http://apps.fao.org.Google Scholar
  11. FAOIFA2001Global estimates of gaseous emissions of NH3NO and N2O from agricultural landFood and Agriculture Organization of the United Nations, International Fertilizer Industry AssociationRomeItalyGoogle Scholar
  12. Fixen, P.E., West, F.B. 2002Nitrogen fertilizers: meeting contemporary challengesAmbio31169176PubMedGoogle Scholar
  13. Granli, T., Bøckman, O.C. 1994Nitrous oxide from agricultureNorw. J. Agric. Sci., Suppl.127128Google Scholar
  14. Hegg, D.A., Radke, L.F., Hobbs, P.V., Rasmussen, R.A., Riggan, P.J. 1990Emissions of some trace gases from biomass firesJ. Geophys. Res.9556695675Google Scholar
  15. IPCC 1995. Climate change 1994. In: Houghton J.T., Meira Filho L.G., Bruce J., Hoesung L., Callander B.A., Haites E., Harris N. and Maskell K. (eds), Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emissions Scenario. Cambridge University Press, Cambridge, UK.Google Scholar
  16. IPCC/OECD/IEA1997Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Volumes 1, 2 and 3IPCC WGI Technical Support UnitHadley CentreBracknell, UKGoogle Scholar
  17. Jarvis, S.C., Pain, B.F. 1997Gaseous Nitrogen Emissions from GrasslandsCAB InternationalWallingfordUK452 Google Scholar
  18. Kituyi, E., Marufu, L., Wandiga, S.O., Jumba, I.O., Andreae, M.O., Helas, G. 2001Bio fuel availability and domestic use patterns in KenyaBiomass Energy20012001Google Scholar
  19. Laughlin, R.J., Stevens, R.J. 2002Evidence for fungal dominance of denitrification and codenitrification in a grassland soilSoil Sci. Soc. Am. J.6615401548Google Scholar
  20. Ludwig, J., Marufu, L.T., Huber, B., Andreae, M.O., Helas, G. 2003Domestic combustion of biomass fuels in developing countries: a major source of atmospheric pollutantsJ. Atmospheric Chem.442337CrossRefGoogle Scholar
  21. Marufu, L., Ludwig, J., Andreae, M.O., Meixner, F.X., Helas, G. 1997Domestic biomass burning in rural and urban Zimbabwe – Part ABiomass Energy125368CrossRefGoogle Scholar
  22. Mosier, A.R., Kroeze, C., Nevison, C., Oenema, O., Seitzinger, S., Van Cleemput, O. 1998Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodologyNutr. Cycl. Agroecosyst.52225248CrossRefGoogle Scholar
  23. Oenema, O., Velthof, G.L., Yamulki, S., Jarvis, S.C. 1997Nitrous oxide emissions from grazed grasslandSoil Use Manage.13288295Google Scholar
  24. Oenema, O., Bannink, A., Sommer, S.G., Velthof, G.L. 2001

    Gaseous nitrogen emissions from animal production systems

    Follett, R.F.Hatfield, J.L. eds. Nitrogen in the Environment: Sources, Problems, and ManagementElsevier ScienceAmsterdamThe Netherlands255289
    Google Scholar
  25. Papen, H., von Berg, R., Hinkel, I., Thoene, B., Rennenberg, H. 1989Heterotrophic nitrification by Alcaligenes faecalis: NO2NO3N2O, and NO production in exponentially growing culturesAppl. Environ. Microbiol.5520682072PubMedGoogle Scholar
  26. Poth, M., Focht, D.D. 198515N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrificationAppl. Environ. Microbiol.4911341141Google Scholar
  27. Robertson, L.A., Kuenen, J.G. 1990Combined heterotrophic nitrification and aerobic denitrification in Thiosphaera pantotrophaother bacteriaAntonie van Leeuwenhoek57139152CrossRefPubMedGoogle Scholar
  28. Shoun, H., Kim, D., Uchiyama, H., Sugiyama, J. 1992Denitrification by fungiFEMS Microbiol. Lett.94277282CrossRefGoogle Scholar
  29. Sims J.T., Bergström L., Bowman B.T. and Oenema O. 2004. Sustainable nutrient management for intensive animal agriculture. Soil Use and Management (in press).Google Scholar
  30. Smil, V. 1999Nitrogen in crop production: an account of global flowsGlobal Biogeochem. Cycles13647662CrossRefGoogle Scholar
  31. Smil, V. 2002Eating meat: evolution, patterns, and consequencesPopul. Dev. Rev.28599639CrossRefGoogle Scholar
  32. Thompson, P.B., Nardone, A. 1999Sustainable livestock production: methodological and ethical challengesLivestock Prod. Sci.61111119CrossRefGoogle Scholar
  33. Van Aardenne, J.A. 2002Uncertainties in Emission InventoriesWageningen UniversityWageningen, The Netherlands134 Ph.D. ThesisGoogle Scholar
  34. Van Bruchem, J., Schiere, H., van Keulen, H. 1999Dairy farming in the Netherlands in transition towards more efficient nutrient useLivestock Prod. Sci.61145153Google Scholar
  35. Van Groenigen J.W., Kuikman P.J., de Groot W.J.M. and Velthof G.L. 2005. Nitrous oxide emission from urine-treated soil as influenced by urine composition and soil physical conditions. Soil Biol. Biochem 37: 463–473.Google Scholar
  36. Velthof, G.L., Brader, A.B., Oenema, O. 1996Seasonal variations in nitrous oxide losses from managed grasslands in the NetherlandsPlant Soil181263274CrossRefGoogle Scholar
  37. Velthof, G.L., Kuikman, P.J., Oenema, O. 2003Nitrous oxide emissions from animal manure applied to soil under controlled conditionsBiol. Fertil. Soils2003221230Google Scholar
  38. Velthof G.L., Nelemans J.A., Oenema O. and Kuikman P.J. 2005. Gaseous nitrogen and carbon losses from pig manure derived from different diets. J. Environ. Qual. (in press).Google Scholar
  39. Venterea, R.T., Rolston, D.E. 2002Nitrogen oxide trace gas transport and transformations: II model simulations compared with dataSoil Sci.1674961CrossRefGoogle Scholar
  40. Webb, J., Chadwick, D.R., Ellis, S. 2004Emissions of ammonia and nitrous oxide following incorporation in the soil of farmyard waste stored at different densitiesNutr. Cycl. Agroecosyst.706776CrossRefGoogle Scholar
  41. Webster, E.A., Hopkins, D.W. 1996Nitrogen and oxygen isotope ratios of nitrous oxide emitted from soil and produced by nitrifying and denitrifying bacteriaBiol. Fertil. Soils22326330Google Scholar
  42. Whitehead, D.C. 2000Nutrient Elements in Grassland. Soil-Plant-Animal RelationshipsCABI PublishingWallingfordUK369Google Scholar
  43. Wrage, N., Velthof, G.L., Beusichem, M.L., Oenema, O. 2001Role of nitrifier denitrification in the production of nitrous oxideSoil Biol. Biochem.3317231732CrossRefGoogle Scholar
  44. Wrage, N., Velthof, G.L., Laanbroek, H.J., Oenema, O. 2004aNitrous oxide production in grassland soils: assessing the contribution of nitrifier denitrificationSoil Biol. Biochem.36229236Google Scholar
  45. Wrage, N., Velthof, G.L., Oenema, O., Laanbroek, H.J. 2004bAcetylene and oxygen as inhibitors of nitrous oxide production in Nitrosomonas europaeaNitrosospira briensis: a cautionary taleFEMS Microbiol. Ecol.471318CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Oene Oenema
    • 1
    • 2
  • Nicole Wrage
    • 2
    • 3
  • Gerard L. Velthof
    • 1
  • Jan Willem van Groenigen
    • 1
  • Jan Dolfing
    • 1
  • Peter J. Kuikman
    • 1
  1. 1.Wageningen University and Research Centre, AlterraWageningenThe Netherlands
  2. 2.Department of Soil QualityWageningen University and Research CentreWageningenThe Netherlands
  3. 3.Imperial CollegeKentUK

Personalised recommendations