Nutrient Cycling in Agroecosystems

, Volume 72, Issue 1, pp 41–49 | Cite as

Mitigation of N2O and CH4 Emission from Rice and Wheat Cropping Systems Using Dicyandiamide and Hydroquinone



Agriculture contributes considerably to the emission of greenhouse gases, such as N2O and CH4. Here we summarize results from previous pot experiments assessing the effectiveness of urease and nitrification inhibitors reducing both N2O and CH4 emissions from wheat and rice cropping systems fertilized with urea (U). For the wheat cropping system, using a cambisol, we observed that the application of U with hydroquinone (HQ, a urease inhibitor), U with dicyandiamide (DCD, a nitrification inhibitor) and U with HQ plus DCD decreased the N2O emissions by 11.4, 22.3 and 25.1%, respectively. For the rice copping system, using a luvisol, we found that the application of U with HQ, U with DCD and U with HQ plus DCD decreased N2O emissions by 10.6, 47.0 and 62.3%, respectively, and CH4 emissions by 30.1, 53.1 and 58.3%, respectively. In terms of total global warming potential (GWP) a reduction of 61.2% could be realized via the combined addition of HQ and DCD. The addition of wheat straw reduced the activity of HQ and DCD in the rice cropping experiments. In terms of total GWP only a reduction of 30.7% could be achieved. In general, both in upland and flooded conditions, the application of HQ and DCD alone was less effective than HQ in combination with DCD, but not significantly for U plus DCD treatment. Our observations may be further constrained, however, by practical, economic or social problems and should therefore be tested at the scale of a region (e.g. a watershed) and related to an integrated abatement of agricultural N losses.

Key words

Inhibitor Methane Mitigation Nitrification Nitrous oxide Urease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aulakh, M.S., Wassmann, R., Bueno, C., Renneberg, H. 2001Impact of root exudates of different cultivars and plant development stage of rice (Oryza sativa) on methane production in a paddy soilPlant Soil2307786CrossRefGoogle Scholar
  2. Bharati, K., Mohanty, S.R., Padmavathi, P.V.L., Rao, V.R., Adhya, T.K. 2000Influence of six nitrification inhibitors on methane production in a flooded alluvial soilNutr. Cycl. Agroecosyst.58389394CrossRefGoogle Scholar
  3. Boeckx, P., Van Cleemput, O. 1996Methane oxidation in a neutral landfill cover soil: influence of temperaturemoisture content and N-turnoverJ. Environ. Qual.25178183Google Scholar
  4. Carreres, R., Sendra, J., Ballesteros, R., Valiente, F.E., Quesada, A., Carrasco, D., Leganés, F., García de la Cuadra, J. 2003Assessement of slow release fertilizers and nitrification inhibitors in flooded riceBiol. Fertil. Soils298087CrossRefGoogle Scholar
  5. Chang, C., Janzen, H.H., Cho, C.M., Nakonechny, E.M. 1998Nitrous oxide emission through plantsSoil Sci. Soc. Am. J.623538Google Scholar
  6. Chen, L., Boeckx, P., Zhou, L., Van Cleemput, O., Li, R. 1998Effect of hydroquinonedicyandiamide and encapsulated calcium carbide on urea N uptake by spring wheatsoil mineral N content and N2O emissionSoil Use Manag.14230233Google Scholar
  7. Delgado, J.A., Mosier, A.R. 1996Mitigation alternatives to decrease nitrous oxide emissions and urea-nitrogen loss and their effect on methane fluxJ. Environ. Qual.2511051111Google Scholar
  8. Di, H.J., Cameron, K.C. 2002The use of nitrification inhibitordicyandiamide (DCD), to decrease nitrate leaching and nitrous oxide emissions in a simulated grazed and irrigated grasslandSoil Use Manag.18395403CrossRefGoogle Scholar
  9. Di, H.J., Cameron, K.C. 2003Mitigation of nitrous oxide emissions in spray-irrigated grazed grassland by treating the soil with dicyandiamidea nitrification inhibitorSoil Use Manag.19284290CrossRefGoogle Scholar
  10. FAO 2003. FAOSTAT Agriculture data. Scholar
  11. Freney, J.R. 1997Strategies to reduce gaseous emissions of nitrogen from irrigated agricultureNutr. Cycl. Agroecosyst.48155160CrossRefGoogle Scholar
  12. IPCC (Intergovernmental Panel on Climate Change) 1997. Revised 1996 IPCC Guidelines for national greenhouse gas inventories (Volume 1, 2 and 3).Google Scholar
  13. IPCC (Intergovernmental Panel on Climate Change)2001Climate Change 2001. The scientific basisCambridge University PressCambridge881Google Scholar
  14. Huang, Y., Jiao, Y., Zong, L., Wang, Y., Sass, R.L. 2002Nitrous oxide emission from the wheat growing season in eighteen Chinese paddy soils: an outdoor experimentBiol. Fertil. Soils36411417CrossRefGoogle Scholar
  15. Krüger, M., Eller, G., Conrad, R., Frenzel, P. 2002Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotope and specific inhibitorsGlobal Change Biol.8265280CrossRefGoogle Scholar
  16. Kumar, U., Jain, M.C., Pathak, H., Kumar, S., Majumdar, D. 2000Nitrous oxide emission from different fertilizers and its mitigation by nitrification inhibitors in irrigated riceBiol. Fertil. Soils32474478CrossRefGoogle Scholar
  17. Lindau, C.W., Bollich, P.K., Delaune, R.D., Mosier, A.R., Bronson, K.F. 1993Methane mitigation in flooded Louisiana rice fieldsBiol. Fertil. Soils15174178CrossRefGoogle Scholar
  18. Majumdar, D. 2002Suppression of nitrification and N2O emission from karanjin a nitrification inhibitor derived from karanja (Pongamia glabra Vent.)Chemopshere47845850CrossRefGoogle Scholar
  19. Majumdar, D., Pathak, H., Kumar, S., Jain, M.C. 2002Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitorsAgric. Ecosyst. Environ.91283293CrossRefGoogle Scholar
  20. Pathak, H., Bhatia, A., Prasad, S., Singh, S., Kumar, S., Jain, M.C., Kumar, U. 2002Emission of nitrous oxide from rice-wheat systems of Indo-Gangetic plains of IndiaEnviron. Monit. Assess.77163178CrossRefPubMedGoogle Scholar
  21. Pathak, H., Prasad, S., Bhatia, A., Singh, S., Kumar, S., Jain, M.C. 2003Methane emission from rice-wheat cropping systems in the Indo-Gangetic plain in relation to irrigation, farmyard manure and dicyandiamide applicationAgric. Ecosyst. Environ.97309316CrossRefGoogle Scholar
  22. Rath, A.K., Swain, B., Ramkrishnan, B., Panda, D., Adya, T.K., Rao, V.R., Sethunathan, N. 1999Influence of fertilizer management and water regime on methane emission from rice fieldsAgric. Ecosyst. Environ.7699107CrossRefGoogle Scholar
  23. Wang, Y.T., Gabbard, H.D., Pai, P.C. 1991aInhibition of acetate methanogenesis by phenolsJ. Environ. Eng. ASCE117487500Google Scholar
  24. Wang, Z., Cleemput, O., Baert, L. 1991bEffect of urease inhibitors on denitrifcation in soilSoil Use Manag.7230233Google Scholar
  25. Weiske, A., Benckiser, G., Herbert, T., Ottow, J.C.G. 2001Influence of the nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in comparison to dyciandiamide (DCD) on nitrous oxidecarbon dioxide and methane oxidation during 3 years of repeated application in field experimentsBiol. Fertil. Soils34109117CrossRefGoogle Scholar
  26. Wolt, J.D. 2004A meta-evaluation of nitrapyrin agronomic and environmental effectiveness with emphasis on corn production in the Midwestern USANutr. Cycl. Agroecosyst.692341CrossRefGoogle Scholar
  27. Xu, X., Wang, Y., Zheng, X., Wang, M., Wang, Z., Zhou, L., Van Cleemput, O. 2000aMethane emission from a simulated rice field ecosystem as influenced by hydroquinone and dyciandiamideSci. Total Environ.263243253CrossRefGoogle Scholar
  28. Xu, X., Zhou, L., Van Cleemput, O., Wang, Z. 2000bFate of urea−15N in a soil-wheat system as influenced by urease inhibitor hydroquinone and nitrification inhibitor dicyandiamidePlant Soil220261270CrossRefGoogle Scholar
  29. Xu, X., Huang, Y., Zhou, L., Huang, G., Van Cleemput, O. 2001Effect of dicyandiamide and hydroquinone on the transformation of urea-nitrogen-15 in soil cropped to wheatBiol. Fertil. Soils34286290Google Scholar
  30. Xu, X., Boeckx, P., Van Cleemput, O., Zhou, L. 2002aUrease and nitrification inhibitors to reduce emissions of CH4N2O in rice productionNutr. Cycl. Agroecosyst.64203211CrossRefGoogle Scholar
  31. Xu, X., Boeckx, P., Wang, Y., Huang, Y., Zheng, X., Hu, F., Cleemput, O. 2002bNitrous oxide and methane emissions during rice plants and through rice plants: effect of dicyandiamide and hydroquinoneBiol. Fertil. Soils365358CrossRefGoogle Scholar
  32. Xu, X., Boeckx, P., Zhou, L., Cleemput, O. 2002cInhibition experiments on nitrous oxide emission from paddy soilsGlobal Biogeochem. Cycl.1617/117/9Google Scholar
  33. Yu, K.W., Wang, Z.P., Vermoesen, A., Patrick, W.H., Cleemput, O. 2001Nitrous oxide and methane emission from different soils suspensions: effect of redox statusBiol. Fertil. Soils342530CrossRefGoogle Scholar
  34. Zerulla, W., Barth, T., Dressel, J., Erhardt, K., Horchler Locquenhien, K., Pasda, G., Rädle, M., Wissemeier, A.H. 20013,4-dimethylpyrazole (DMPP) – a new nitrification inhibitor for agriculture and horticultureBiol. Fertil. Soils347984CrossRefGoogle Scholar
  35. Zhang, L., Boeckx, P., Chen, G., Cleemput, O. 2000Nitrous oxide emission from herbicide-treated soybeanBiol. Fertil. Soils32173176CrossRefGoogle Scholar
  36. Zheng, X., Fu, C., Xu, X., Yan, X., Huang, Y., Han, S., Hu, F., Chen, G. 2002The Asian nitrogen cycle case studyAmbio317987PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Laboratory of Applied Physical Chemistry – ISOFYS, Faculty of Bioscience EngineeringGhent UniversityGhentBelgium
  2. 2.State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations