Nutrient Cycling in Agroecosystems

, Volume 71, Issue 1, pp 43–54

Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics

  • Patrick K. Mutuo
  • G. Cadisch
  • A. Albrecht
  • C. A. Palm
  • L. Verchot


Losses of carbon (C) stocks in terrestrial ecosystems and increasing concentrations of greenhouse gases in the atmosphere are challenges that scientists and policy makers have been facing in the recent past. Intensified agricultural practices lead to a reduction in ecosystem carbon stocks, mainly due to removal of aboveground biomass as harvest and loss of carbon as CO2 through burning and/or decomposition. Evidence is emerging that agroforestry systems are promising management practices to increase aboveground and soil C stocks and reduce soil degradation, as well as to mitigate greenhouse gas emissions. In the humid tropics, the potential of agroforestry (tree-based) systems to sequester C in vegetation can be over 70 Mg C ha−1, and up to 25 Mg ha−1 in the top 20 cm of soil. In degraded soils of the sub-humid tropics, improved fallow agroforestry practices have been found to increase top soil C stocks up to 1.6 Mg C ha−1 y−1 above continuous maize cropping. Soil C accretion is linked to the structural development of the soil, in particular to increasing C in water stable aggregates (WSA). A review of agroforestry practices in the humid tropics showed that these systems were able to mitigate N2O and CO2 emissions from soils and increase the CH4 sink strength compared to cropping systems. The increase in N2O and CO2 emissions after addition of legume residues in improved fallow systems in the sub-humid tropics indicates the importance of using lower quality organic inputs and increasing nutrient use efficiency to derive more direct and indirect benefits from the system. In summary, these examples provide evidence of several pathways by which agroforestry systems can increase C sequestration and reduce greenhouse gas emissions.


Agroforestry systems Carbon sequestration Greenhouse gas emissions Humid tropics Sub-humid tropics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baggs E.M., Cadisch G., Verchot L.V., Millar N. and Ndufa J.K. 2002b. Environmental impacts of tropical agricultural systems: N2O emissions and organic matter management. In: 17th World Soil Science Conference ’Soil Science: Confronting New Realities in the 21st Century’. CD-Paper No. 1545. International Soil Sciences Congress, Bangkok, Thailand, pp. 1– 11.Google Scholar
  2. Baggs, E.M., Millar, N., Ndufa, J.K., Cadisch, G. 2001

    Effect of residue quality on N2O emissions from tropical soils

    Rees, R.M.Ball, B.C.Campbell, C.D.Watson, C.A. eds. Sustainable Management of Soil Organic Matter.CAB InternationalWallingford, UK120125
    Google Scholar
  3. Baggs, E.M., Rees, R.M., Castle, K., Scott, A., Smith, K.A., Vinten, A.J.A. 2002Nitrous oxide release from soils receiving N-rich crop residues and paper mill sludge in eastern ScotlandAgric. Ecosyst. Environ90109123Google Scholar
  4. Baggs, E.M., Rees, R.M., Smith, K.A., Vinten, A.J.A. 2000Nitrous oxide emission from soils after incorporating crop residuesSoil Use Manage168287Google Scholar
  5. Batjes, N.H., Sombroek, W.G. 1997Possibilities for carbon sequestration in tropical and subtropical soilsGlobal Change Biol3161173Google Scholar
  6. Bouwman, A.F., Hoek, K.W., Olivier, J.G.J. 1995Uncertainties in the global source distribution of nitrous oxideJ. Geophys. Res10027852800Google Scholar
  7. Brady, N.C. 1996Alternatives to slash-and-burn: a global imperativeAgric. Ecosyst. Environ58311Google Scholar
  8. Cadisch, G., Oliveira, O.C., Cantarutti, R., Carvalho, E., Urquiaga, S. 1998

    The role of legume quality in soil carbon dynamics in savannah ecosystems

    Bergstrom, L.Kirchmann, H. eds. Carbon and Nitrogen Dynamics in Natural and Agricultural Tropical EcosystemsCAB InternationalWallingford, UK4770
    Google Scholar
  9. Davidson, E.A., Keller, M., Erickson, H.E., Verchot, L.V., Veldkamp, E. 2000Testing a conceptual model of soil emissions of nitrous and nitric oxideBioScience50667680Google Scholar
  10. Davidson, E.A., Matson, P.A., Brooks, P.D. 1996Nitrous oxide emission controls and inorganic nitrogen dynamics in fertilized tropical agricultural soilsSoil Sci. Soc. Am. J6011451152CrossRefGoogle Scholar
  11. de Oliveira O.C., Cadisch G., Whitmore A., de Oliveira I.P., Urquiaga S., Alves A. and Boddey R.M. 2005. Fractionation of organic matter in soil from under a chronosequence of Brachiaria pastures of advancing age and decreasing productivity. Eur. J. Soil Sci. (in press).Google Scholar
  12. Detwiler, R.P. 1986Land use change and the global carbon cycle: the role of tropical soilBiogeochemistry26793Google Scholar
  13. Dixon, R.K., Andrasko, K.A., Sussman, F.A., Lavinson, M.A., Trexler, M.C., Vinson, T.S. 1993Tropical forests: their past, present and potential future role in the terrestrial carbon budgetWater Air Soil Pollut707194Google Scholar
  14. Erickson, H.E., Keller, M. 1997Tropical land use change and soil emissions of nitrogen oxidesSoil Use Manage13278287Google Scholar
  15. Erickson, H.E., Keller, M., Davidson, E.A. 2001Nitrogen oxide fluxes and nitrogen cycling during post agricultural succession and forest fertilization in the humid tropicsEcosystems46784Google Scholar
  16. Feller, C. 1993

    Organic inputs, soil organic matter and functional soil organic compartments in low-activity clay soils in tropical zones

    Mulongoy, K.Merckx, R. eds. Soil Organic Matter Dynamics and Sustainability of Tropical AgricultureIITA/KU Leuven John WileyNew York, USA7788
    Google Scholar
  17. Feller, C., Albrecht, A., Tessier, D. 1996

    Aggregation and organic matter storage in Kaolinitic and smectitic tropical soils

    Carter, M.R.Stewart, B.A. eds. Structure and Organic Matter Storage in Agricultural SoilsAdv. Soil SciCRC Lewis Publishers309360
    Google Scholar
  18. Fernandes, S.A.P., Bernoux, M., Cerri, C.C., Feigl, B.J., Piccolo, M.C. 2002Seasonal variation of soil chemical properties and CO2 and CH4 fluxes in unfertilized and P-fertilized pastures in an ultisol of the Brazilian AmazonGeoderma107227241Google Scholar
  19. Fisher, M.J., Rao, I.M., Ayarza, M.A., Lascano, C.E., Sanz, J.I., Thomas, R.J., Vera, R.R. 1994Carbon storage by introduced deep-rooted grasses in the South American SavannasNature371236238Google Scholar
  20. Food and Agriculture Organization (FAO)2001Carbon sequestration in soils: Proposals for land management in arid and tropical areaFAORome ItalyGoogle Scholar
  21. Gichuru, M.P. 1991Residual effects of natural bush, Cajanus cajan and Tephrosia candida on the productivity of an acid soil in southern NigeriaPlant Soil1343136Google Scholar
  22. Guo, L.B., Gifford, R.M. 2002Soil carbon stocks and land use change: a meta analysisGlobal Change Biol8345360Google Scholar
  23. Gregorich, E.G., Greer, K.J., Anderson, D.W., Liang, B.C. 1998Carbon distribution and losses: erosion and deposition effectsSoil Tillage Res47291302Google Scholar
  24. Hairiah, K., Sitompul, S.M., Noordwijk, M., Palm, C.A. 2001stocks of tropical land use systems as part of the global carbon balance: effects of forest conversion and options for clean development activities. Alternatives to slash-and-burn (ASB) Lecture Note 4ICRAFBogor, IndonesiaGoogle Scholar
  25. IPCC2000Land use, land-use change, and forestry Intergovernmental Panel on Climate ChangeCambridge University PressCambridge UKGoogle Scholar
  26. Kang, B.T., Caveness, F.E., Tian, G., Kolawole, G.O. 1999Long-term alley cropping with four species on an Alfisol in Southwest Nigeria - effect on crop performance, soil chemical properties and nematode populationNutr. Cycl. Agroecosyst54145155Google Scholar
  27. Keller, M., Kaplan, W.A., Wofsy, S.C. 1986Emissions of N2O, CH4 and CO2 from tropical forest soilsJ. Geophys. Res91791802Google Scholar
  28. Keller, M., Mitre, M.E., Stallard, R.F. 1990Consumption of atmospheric methane in soils of Central Panama: Effects of agricultural developmentGlobal Biogeochem. Cycles42127Google Scholar
  29. Keller, M., Reiners, W.A. 1994Soil-atmosphere exchange of nitrous oxide, nitric oxide, and methane under secondary succession of pasture to forest in the Atlantic lowlands of Costa RicaGlobal Biogeochem. Cycles8399409Google Scholar
  30. Krankina, O.N., Dixon, R.K. 1994Forest management options to conserve and sequester terrestrial carbon in the Russian FederationWorld Resour. Rev688101Google Scholar
  31. Lal, R. 2000Soil Quality and Soil ErosionCRC PressBoca Rason Florida352Google Scholar
  32. Lasco, R.D., Suson, P.D. 1999A Leucaena leucocephala-based indigenous fallow system in central Philippines: the Naalad systemInt. Tree Crops J.10161174Google Scholar
  33. Lugo, A.E., Brown, S. 1993Management of tropical soils as sinks or sources of atmospheric carbonPlant Soil1492741Google Scholar
  34. Luizao, F., Matson, P.A., Livingston, G., Luizao, R., Vitousek, P. 1989Nitrous oxide flux following tropical land clearingGlobal Biogeochem. Cycles3281285Google Scholar
  35. Lundgren, B. 1982Introduction [Editorial]Agr. Syst136Google Scholar
  36. Matson, P.A., Naylor, R., Ortiz-Monasterio, I. 1998Integration of environmental, agronomic, and economic aspects of fertilizer managementScience280112115Google Scholar
  37. Millar N. 2002. The effect of improved fallow residue quality on nitrous oxide emissions from tropical soils. Ph.D. Thesis, University of London, 322 pp.Google Scholar
  38. Millar, N., Ndufa, J.K., Cadisch, G., Baggs, E.M. 2004Nitrous oxide emissions following incorporation of improved-fallow residues in the humid tropicsGlobal Biogeochem. Cycles18GB1032Google Scholar
  39. Mosier, A., Schimel, D., Valentine, D., Bronson, K., Parton, W. 1991Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslandsNature350330332Google Scholar
  40. Murdiyarso, D., Hairiah, K., Husin, Y.A., Wasrin, U.R. 1997

    Gas emissions and carbon balance in slash-and-burn practices

    Noordwijk, M.Tomich, T.P.Garrity, D.P.Fagi, A.M. eds. Alternatives to Slash-and-Burn Research in IndonesiaASB-Indonesia Report No. 6Bogor, Indonesia3558
    Google Scholar
  41. Murdiyarso, D., Suyanto, D.A., Widodo, M. 2000

    Spatial modelling of land-cover change to assess its impacts on aboveground carbon stocks: case study in Pelepat sub-watershed of batanghari watershed, Jambi, Sumatra

    Murdiyarso, D.Tsuruta, H. eds. The Impacts of Land-use/cover Change on Greenhouse Gas Emissions in Tropical AsiaIC-SEABogor, Indonesia and NIAES, Tsukuba, Japan107128
    Google Scholar
  42. Mutuo P.K. 2003. Potential of improved tropical legume fallows and zero tillage practices for soil organic carbon sequestration. Ph.D. Thesis, University of London.Google Scholar
  43. Nair, P.K.R. 1990Prospects for agroforestry in the tropics World Bank Technical Paper No. 131World BankWashington, DC, USAGoogle Scholar
  44. Ndufa J.K. 2001. Nitrogen dynamics and soil organic matter benefits to maize in pure and mixed species fallows in western Kenya. Ph.D. Thesis, Imperial College at Wye, University of London.Google Scholar
  45. Onim, J.F.M., Mathuva, M., Otieno, K., Fitzhugh, H.A. 1990Soil fertility changes and response of maize and beans to green manures of Leucaena, Sesbania and pigeon peaAgr. Syst12197215Google Scholar
  46. Palm, C.A., Alegre, J.C., Arevalo, L., Mutuo, P.K., Mosier, A., Coe, R. 2002Nitrous oxide and methane fluxes in six different land use systems in the Peruvian AmazonGlobal Biogeochem. Cycles161073doi: 10.1029/2001GB001855Google Scholar
  47. Palm, C.A., Gachengo, C., Delve, R., Cadisch, G., Giller, K.E. 2001Organic inputs for soil fertility management: Application of an organic resource databaseAgric. Ecosyst. Environ832742Google Scholar
  48. Palm, C.A., Houghton, R.A., Mellilo, J.M., Scole, D.L. 1986Atmospheric carbon dioxide from deforestation in Southeast AsiaBiotropica18177188Google Scholar
  49. Palm C.A., Woomer P.L., Alegre J.C., Arevalo L., Castilla C., Cordeiro D.G. et al. 2000. Carbon sequestration and trace gas emissions in slash-and-burn and alternative land-uses in the humid tropics. ASB Climate Change Working Group Final Report, Phase II. Nairobi, Kenya.Google Scholar
  50. Paustian, K., Andr’en, O., Janzen, H.H., Lal, R., Smith, P., Tian, G.,  et al. 1997Agricultural soils as a sink to mitigate CO2 emissionsSoil Use Manage1315Google Scholar
  51. Prasetyo, L.B., Saito, G., Tsuruta, H. 2000

    Estimation of greenhouse gas emissions using remote sensing and GIS techniques in Sumatra, Indonesia

    Murdiyarso, D.Tsuruta, H. eds. The Impacts of Land-use/Cover Change on Greenhouse Gas Emissions in Tropical AsiaIC-SEABogor, Indonesia and NIAES, Tsukuba, Japan3552
    Google Scholar
  52. Prinz, D. 1986Increasing the productivity of smallholder farming systems by introduction of planted fallowsPlant Res. Develop243156Google Scholar
  53. Sass, R.L. 1994

    Short summary chapter for methane

    Minami, K.Mosier, A.Sass, R. eds. CH4 and N2O: Global Emissions and Controls from Rice Fields and Other Agricultural and Industrial Sources.NIAES, Yodendo PublishersTokyo, Japan17
    Google Scholar
  54. Schroeder, P. 1993Agroforestry systems: Integrated land use to store and conserve carbonClimate Res35360Google Scholar
  55. Steudler, P.A., Melillo, J.M., Feigl, B.J., Neill, C., Piccolo, M.C., Cerri, C. 1996Consequences of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon BasinJ. Geophys. Res101547554Google Scholar
  56. Tomich, T.P., Noordwijk, M., Budidarsono, S., Gillison, A., Kusumanto, T., Murdiyarso, D.,  et al. 1998Alternatives to slas hand- burn in Indonesia: Summary Report and Synthesis of Phase IIICRAFBogor, IndonesiaGoogle Scholar
  57. Torquebiau, E.F., Kwesiga, F. 1996Root development in Sesbania sesban fallow-maize system in eastern ZambiaAgr. Syst34193211Google Scholar
  58. Tsuruta, H., Ishizuka, S., Ueda, S., Murdiyarso, D. 2000

    Seasonal and spatial variations of CO2, CH4, and N2O fluxes from the surface soils in different forms of land-use/cover in Jambi, Sumatra

    Murdiyarso, D.Tsuruta, H. eds. The impacts of Land-use/Cover Change on Greenhouse Gas Emissions in Tropical AsiaIC-SEABogor, Indonesia and NIAES, Tsukuba, Japan730
    Google Scholar
  59. Noordwijk, M., Cerri, C., Woomer, P.L., Nugroho, K., Bernoux, M. 1997Soil carbon dynamics in the humid tropical forest zoneGeoderma79187225Google Scholar
  60. Veldkamp, E., Keller, M. 1997Nitrogen oxide emissions from a banana plantation in the humid tropicsJ. Geophys. Res1021588915898Google Scholar
  61. Verchot, L.V., Davidson, E.A., Cattanio, J.H., Ackerman, I.L., Erickson, H.E., Keller, M. 1999Land use change and biogeochemical controls of nitrogen oxide emissions from soils in eastern AmazonGlobal Biogeochem. Cycles133146Google Scholar
  62. Verchot, L.V., Davidson, E.A., Cattanio, J.H., Ackerman, I.L. 2000Land-use change and biogeochemical controls on methane fluxes in soils of eastern AmazonEcosystems34156Google Scholar
  63. Vitousek, P., Matson, P., Volkmann, C., Mass, J., Garcia, G. 1989Nitrous oxide flux from dry tropical forestsGlobal Biogeochem. Cycles3375382CrossRefGoogle Scholar
  64. Wiersum, K.F. 1986Ecological aspects of agroforestry with special emphasis on tree-soil interaction: lecture notes. FONC project Communication 16Fakultas Kerhuanan Universiti Gadjah MadaJogJakarta IndonesiaGoogle Scholar
  65. Winjum, J.K., Dixon, R.K., Schroeder, P.E. 1992Estimating the global potential of forest and agroforest management practices to sequester carbonWater Air Soil Pollut64213228Google Scholar
  66. Woomer, P.L., Palm, C.A., Alegre, J., Castilla, C., Cordeiro, D.G., Hairiah, K.,  et al. 2000

    Slash-and-burn effects on carbon stocks in the humid tropics

    Lal, R.Kimble, J.M.Stewart, B.A. eds. Global Climate Change and Tropical Ecosystems Adv. Soil SciCRC Press Inc.Boca Raton, Florida, USA99115
    Google Scholar
  67. Young, A. 1997Agroforestry for Soil Management, 2nd edCAB InternationalWallingford, UK320Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Patrick K. Mutuo
    • 1
    • 2
  • G. Cadisch
    • 1
  • A. Albrecht
    • 2
    • 3
  • C. A. Palm
    • 4
  • L. Verchot
    • 2
  1. 1.Department of Agricultural SciencesImperial College at Wye, University of LondonKentUK
  2. 2.World Agroforestry CentreNairobiKenya
  3. 3.IRDc/o World Agroforestry CentreNairobiKenya
  4. 4.The Earth InstituteColumbia UniversityPalisadesUSA

Personalised recommendations