A phase-field model for anisotropic brittle fracturing of piezoelectric ceramics

  • A. Sridhar
  • M.-A. KeipEmail author
Computational Mechanics


Piezoelectric ceramics are inherently brittle materials that show electromechanical coupling under electrical and mechanical stimuli. In the last decades piezoelectric materials have garnered significant attention due to their established applications as sensors and actuators. In this context the structural reliability of such materials under varied conditions is paramount. In the present work we propose a phase-field approach to model crack propagation in a coupled electromechanical setting. The proposed framework accounts for anisotropic crack propagation by employing appropriate structural tensors that enter the crack-surface-density function as additional arguments. Appropriate choices of degradation functions allow for the accommodation of varied electrical boundary conditions along cracks. Based on experimental results available in the literature, we employ a non-associative dissipative framework in which fracturing processes are driven by the mechanical part of the coupled electromechanical driving force alone. The modeling capabilities of the proposed framework are demonstrated by a set of numerical examples in two and three spatial dimensions.


Electromechanics Piezoelectrics Fracturing Phase-field models Anisotropy 



Funding was provided by German Research Foundation (Grant no. KE 1849/2-2).


  1. Abdollahi A, Arias I (2011) Phase-field modeling of the coupled microstructure and fracture evolution in ferroelectric single crystals. Acta Mater 59:4733–4746CrossRefGoogle Scholar
  2. Abdollahi A, Arias I (2012a) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60:2100–2126CrossRefGoogle Scholar
  3. Abdollahi A, Arias I (2012b) Numerical simulation of intergranular and transgranular crack propagation in ferroelectric polycrystals. Int J Fract 174:3–15CrossRefGoogle Scholar
  4. Abdollahi A, Arias I (2015) Phase-field modeling of fracture in ferroelectric materials. Arch Comput Methods Eng 22(2):153–181CrossRefGoogle Scholar
  5. Bent AA, Hagood NW (1997) Piezoelectric fiber composites with interdigitated electrodes. J Intell Mater Syst Struct 8(11):903–919CrossRefGoogle Scholar
  6. Bent AA, Hagood NW, Rodgers JP (1995) Anisotropic actuation with piezoelectric fiber composites. J Intell Mater Syst Struct 6(3):338–349CrossRefGoogle Scholar
  7. Boehler JP (1987) Application of tensor functions in solid mechanics, Vol 292 of CISM courses and lectures. Springer, BerlinGoogle Scholar
  8. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220:77–95CrossRefGoogle Scholar
  9. Bourdin B, Francfort G, Marigo J-J (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826CrossRefGoogle Scholar
  10. Bourdin B, Francfort GA, Marigo J-J (2008) Special invited exposition: the variational approach to fracture. J Elast 91:5–148CrossRefGoogle Scholar
  11. Clayton JD, Knap J (2015) Phase field modeling of directional fracture in anisotropic polycrystals. Comput Mater Sci 98:158–169CrossRefGoogle Scholar
  12. Deeg W (1980) The analysis of dislocation, crack, and inclusion problems in piezoelectric solids. Ph.D. Thesis, Stanford UniversityGoogle Scholar
  13. dos Lucato S, Santos E, Bahr H-A, Pham V-B, Lupascu D, Balke H, Bahr U (2002) Electrically driven cracks in piezoelectric cermaics: experiments and fracture mechanics analysis. J Mech Phys Solids 50:2333–2353CrossRefGoogle Scholar
  14. Eggleston JJ, McFadden GB, Voorhees PW (2001) A phase-field model for highly anisotropic interfacial energy. Physica D 150:91–103CrossRefGoogle Scholar
  15. Fang D, Liu B, Hwang K (1999) Energy analysis on fracture of ferroelectric ceramics. Int J Fract 100:401–408CrossRefGoogle Scholar
  16. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46:1319–1342CrossRefGoogle Scholar
  17. Fu R, Zhang T (2000) Effects of an electric field on the fracture toughness of poled lead zirconate titanate ceramics. J Am Ceram Soc 83(5):1215–1218CrossRefGoogle Scholar
  18. Gao H, Zhang T, Tong P (1997) Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J Mech Phys Solids 45:491–510CrossRefGoogle Scholar
  19. Griffith AA (1920) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198CrossRefGoogle Scholar
  20. Griffith AA (1924) The theory of rupture. In Biezeno CB, Burgers JM (eds) Proceedings of the first international congress for applied mechanics, Delft, pp 55–63Google Scholar
  21. Hakim V, Karma A (2005) Crack path prediction in anisotropic brittle materials. Phys Rev Lett 95:235501-1–4CrossRefGoogle Scholar
  22. Hakim V, Karma A (2009) Laws of crack motion and phase-field models of fracture. J Mech Phys Solids 57:342–368CrossRefGoogle Scholar
  23. Halphen B, Nguyen QS (1975) Sur les matériaux standard généralisés. J mécanique 14:39–63Google Scholar
  24. Jaffe B, Cook W, Jaffe H (1971) Piezoelectric ceramics. Academic Press, LondonGoogle Scholar
  25. Jiang Y, Zhang Y, Liu B, Fang D (2009) Study on crack propagation in ferroelectric single crystal under electric loading. Acta Mater 57(5):1630–1638CrossRefGoogle Scholar
  26. Karma A, Kessler D, levine H (2001) Phase-field model of mode iii dynamic fracture. Phys Rev Lett 87(4):1–4CrossRefGoogle Scholar
  27. Kuhn C, Müller R (2010) A continuum phase field model for fracture. Eng Fract Mech 77:3625–3634CrossRefGoogle Scholar
  28. Kuhn C, Schlüter A, Müller R (2015) On degradation functions in phase field fracture models. Comput Mater Sci 108:374–384CrossRefGoogle Scholar
  29. Kuna M (2010) Fracture mechanics of piezoelectric materials—where are we right now? Eng Fract Mech 77:309–326CrossRefGoogle Scholar
  30. Landis C (2004) Energetically consistent boundary conditions for electromechanical fracture. Int J Solids Struct 4:6291–6315CrossRefGoogle Scholar
  31. Li B, Peco C, Millán D, Arias I, Arroyo M (2015) Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy. Int J Numer Methods Eng 102:711–727CrossRefGoogle Scholar
  32. Li W, McMeeking M, Landis C (2008) On the crack face boundary conditions in electromechanical fracture and an experimental protocol for determining energy release rates. Eur J Mech A Solids 27:285–301CrossRefGoogle Scholar
  33. Linder C, Miehe C (2012) Effect of electric displacement saturation on the hysteretic behavior of ferroelectric ceramics and the initiation and propagation of cracks in piezoelectric ceramics. J Mech Phys Solids 60(5):882–903CrossRefGoogle Scholar
  34. Linder C, Zhang X (2014) Three-dimensional finite elements with embedded strong discontinuities to model failure in electromechanical coupled materials. Comput Methods Appl Mech Eng 273:143–160CrossRefGoogle Scholar
  35. Linder C, Rosato D, Miehe C (2011) New finite elements with embedded strong discontinuities for the modeling of failure in electromechanical coupled solids. Comput Methods Appl Mech Eng 200(1–4):141–161CrossRefGoogle Scholar
  36. Lines M, Glass A (1977) Principles and applications of ferroelectrics and related materials. Clarendon Press, LondonGoogle Scholar
  37. Lynch CS (1998) Fracture of ferroelectric and relaxor electro-ceramics: influence of electric field. Acta Mater 46(2):599–608CrossRefGoogle Scholar
  38. McMeeking R, Landis C, Jimenez S (2007) A principle of virtualwork for combined electrostatic and mechanical loading of materials. Int J Non-Linear Mech 42:831–838CrossRefGoogle Scholar
  39. McMeeking R (1999) Crack tip energy release rate for a piezoelectric compact tension specimen. Eng Fract Mech 64:217–244CrossRefGoogle Scholar
  40. Miehe C, Hofacker M, Welschinger F (2010a) A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778CrossRefGoogle Scholar
  41. Miehe C, Welschinger F, Hofacker M (2010b) A phase field model of electromechanical fracture. J Mech Phys Solids 58(10):1716–1740CrossRefGoogle Scholar
  42. Miehe C, Welschinger F, Hofacker M (2010c) Thermodynamically consistent phase-field models of fracture. Int J Numer Methods Eng 83(10):1273–1311CrossRefGoogle Scholar
  43. Moulson A, Herbert J (2003) Electroceramics: materilas, properties, applications, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  44. Nguyen T-T, Réthoré J, Yvonnet J, Baietto M-C (2017) Multi-phase-field modeling of anisotropic crack propagation for polycrystalline materials. Comput Mech 60:289–314CrossRefGoogle Scholar
  45. Pak Y (1990) Crack extension force in a piezoelectric material. J Appl Mech 57:647–653CrossRefGoogle Scholar
  46. Park S, Sun C-T (1995) Fracture criteria for piezoelectric ceramics. J Am Ceram Soc 78:1475–1480CrossRefGoogle Scholar
  47. Parton V (1976) Fracture mechanics of piezoelectric materials. Acta Astronaut 3(9):671–683CrossRefGoogle Scholar
  48. Ricoeur A, Kuna M (2003) Influence of electric fields on the fracture of ferroelectric ceramics. J Eur Ceram Soc 23(8):1313–1328CrossRefGoogle Scholar
  49. Ricoeur A, Kuna M (2009) Electrostatic tractions at crack faces and their influence on the fracture mechanics of piezoelectrics. Int J Fract 157(1–2):3CrossRefGoogle Scholar
  50. Ricoeur A, Gellmann R, Wang Z (2015) Influence of inclined electric fields on the effective fracture toughness of piezoelectric ceramics. Acta Mech 226(2):491–503CrossRefGoogle Scholar
  51. Schneider G (2007) Influence of electric field and mechanical stresses on the fracture of ferroelectrics. Ann Rev Mater Res 37:491–538CrossRefGoogle Scholar
  52. Schröder J, Gross D (2004) Invariant formulation of the electromechanical enthalpy function of transversely isotropic piezoelectric materials. Arch Appl Mech 73(8):533–552CrossRefGoogle Scholar
  53. Schröder J, Neff P (2003) Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions. Int J Solids Struct 40(2):401–445CrossRefGoogle Scholar
  54. Sekerka RF (2005) Analytical criteria for missing orientations on three-dimensional equilibrium shapes. J Cryst Growth 275:77–82CrossRefGoogle Scholar
  55. Shanthraj P, Svendsen B, Sharma L, Roters F, Raabe D (2017) Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. J Mech Phys Solids 99:19–34CrossRefGoogle Scholar
  56. Shindo Y, Murakami H, Horiguchi K, Narita F (2002) Evaluation of electric fracture properties of piezoelectric ceramics using the finite element and single-edge precracked-beam methods. J Am Ceram Soc 85(5):1243–1248CrossRefGoogle Scholar
  57. Suo Z, Kuo C, Barnett D, Willis J (1992) Fracture mechanics for piezoelectric ceramics. J Mech Phys Solids 40(4):739–765CrossRefGoogle Scholar
  58. Teichtmeister S, Kienle D, Aldakheel F, Keip M-A (2017) Phase field modeling of fracture in anisotropic brittle solids. Int J Non-Linear Mech 97:1–21CrossRefGoogle Scholar
  59. Tobin AG, Pak E (1993) Effect of electric fields on fracture behavior of PZT ceramics. In: Smart structures and materials 1993: smart materials. International Society for Optics and Photonics, Vol 1916, pp 78–86Google Scholar
  60. Torabi S, Lowengrub J (2012) Simulating interfacial anisotropy in thin-film growth using an extended Cahn–Hilliard model. Phys Rev E 85:041603-1–16CrossRefGoogle Scholar
  61. Torabi S, Lowengrub J, Voigt A, Wise S (2009) A new phase-field model for strongly anisotropic systems. Proc R Soc A 465:1337–1359CrossRefGoogle Scholar
  62. Wang H, Singh RN (1997) Crack propagation in piezoelectric ceramics: effects of applied electric fields. J Appl Phys 81(11):7471–7479CrossRefGoogle Scholar
  63. Wilson ZA, Borden MJ, Landis CM (2013) A phase-field model for fracture in piezoelectric ceramics. Int J Fract 183(2):135–153CrossRefGoogle Scholar
  64. Xu B-X, Schrade D, Gross D, Müller R (2010) Fracture simulation of ferroelectrics based on the phase field continuum and damage variable. Int J Fract 166:163–172CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental Engineering, Institute of Applied MechanicsUniversity of StuttgartStuttgartGermany

Personalised recommendations