Advertisement

International Journal of Fracture

, Volume 216, Issue 1, pp 101–121 | Cite as

Plasticity and ductile fracture modeling of an Al–Si–Mg die-cast alloy

  • Madhav Baral
  • Jinjin Ha
  • Yannis P. KorkolisEmail author
Original Paper
  • 228 Downloads

Abstract

The plastic anisotropy and ductile fracture behavior of an Al–Si–Mg die-cast alloy (AA365-T7, or Aural-2) is probed using a combination of experiments and analysis. The plastic anisotropy is assessed using uniaxial tension, plane-strain tension and disc compression experiments, which are then used to calibrate the Yld2004-3D anisotropic yield criterion. The fracture behavior is investigated using notched tension, central hole and shear specimens, with the latter employing a geometry that was custom-designed for this material. Digital image correlation is used to assess the full strain fields for these experiments. However, fracture is expected to initiate at the through-thickness mid-plane of the specimens and thus it cannot be measured directly from experiments. Instead, the stresses and strains at the onset of fracture are estimated using finite element modeling. The loading path and the resulting fracture locus were found to be sensitive to the yield criterion employed, which underscores the importance of an adequate modeling of plastic anisotropy in ductile fracture studies. Based on the finite element modeling, the fracture locus is represented with three common criteria (Oyane, Johnson–Cook and Hosford–Coulomb), as well as a newly proposed one as the linear combination of the first two. However, beyond that, it is still questionable if all of these experiments are probing the same fracture locus, since the predicted loading paths of notched tension specimens are highly evolving compared to those of central hole and shear ones.

Keywords

Die-cast aluminum alloy Aural-2 Ductile fracture Anisotropy Plasticity Triaxiality Lode-angle 

Notes

Acknowledgements

Support of this work from an industrial sponsor is acknowledged with thanks. We also wish to thank Scott Campbell for his help with preparing some of the specimens. Finally, it is a pleasure to acknowledge the help of 2nd Lt. Moritz Dirian, a visiting student from Universität der Bundeswehr, Munich, Germany in this work.

References

  1. Abedini A, Butcher C, Worswick MJ (2017) Fracture characterization of rolled sheet alloys in shear loading: studies of specimen geometry, anisotropy, and rate sensitivity. Exp Mech 57:75–88.  https://doi.org/10.1007/s11340-016-0211-9 CrossRefGoogle Scholar
  2. Abi-Akl R, Mohr D (2017) Paint-bake effect on the plasticity and fracture of pre-strained aluminum 6451 sheets. Int J Mech Sci 124–125:68–82.  https://doi.org/10.1016/j.ijmecsci.2017.01.002 CrossRefGoogle Scholar
  3. Banabic D (2010) Sheet metal forming processes: constitutive modelling and numerical simulation. Springer, BerlinCrossRefGoogle Scholar
  4. Bao Y, Wierzbicki T (2004) On fracture locus in the equivalent strain and stress triaxiality space. Int J Mech Sci 46:81–98.  https://doi.org/10.1016/j.ijmecsci.2004.02.006 CrossRefGoogle Scholar
  5. Baral M (2015) Experimental investigation of plastic anisotropy of commercially-pure titanium. MS Thesis. University of New HampshireGoogle Scholar
  6. Baral M, Hama T, Knudsen E, Korkolis YP (2018) Plastic deformation of commercially-pure titanium: experiments and modeling. Int J Plast 105:164–194.  https://doi.org/10.1016/j.ijplas.2018.02.009 CrossRefGoogle Scholar
  7. Barlat F, Brem JC, Yoon JW, Chung K, Dick RE, Lege DJ, Pourboghrat F, Choi S-H, Chu E (2003) Plane stress yield function for aluminum alloy sheets–part 1: theory. Int J Plast 19:1297–1319.  https://doi.org/10.1016/S0749-6419(02)00019-0 CrossRefGoogle Scholar
  8. Barlat F, Aretz H, Yoon JW, Karabin ME, Brem JC, Dick RE (2005) Linear transfomation-based anisotropic yield functions. Int J Plast 21:1009–1039.  https://doi.org/10.1016/j.ijplas.2004.06.004 CrossRefGoogle Scholar
  9. Basu S, Benzerga AA (2015) On the path-dependence of the fracture locus in ductile materials: experiments. Int J Solids Struct 71:79–90.  https://doi.org/10.1016/j.ijsolstr.2015.06.003 CrossRefGoogle Scholar
  10. Benzerga AA, Leblond J-B (2010) Ductile fracture by void growth to coalescence. In: Advances in applied mechanics, pp 169–305. https://doi.org/10.1016/S0065-2156(10)44003-X
  11. Benzerga AA, Besson J, Pineau A (2004) Anisotropic ductile fracture. Acta Mater 52:4623–4638.  https://doi.org/10.1016/j.actamat.2004.06.020 CrossRefGoogle Scholar
  12. Benzerga AA, Surovik D, Keralavarma SM (2012) On the path-dependence of the fracture locus in ductile materials—analysis. Int J Plast 37:157–170.  https://doi.org/10.1016/j.ijplas.2012.05.003 CrossRefGoogle Scholar
  13. Clift SE, Hartley P, Sturgess CEN, Rowe GW (1990) Fracture prediction in plastic deformation processes. Int J Mech Sci 32:1–17.  https://doi.org/10.1016/0020-7403(90)90148-C CrossRefGoogle Scholar
  14. Cockcroft MG, Latham DJ (1968) Ductility and the workability of Metals. J Inst Met 96:33–39 https://doi.org/citeulike-article-id:4789874
  15. Coppieters S, Kuwabara T (2014) Identification of post-necking hardening phenomena in ductile sheet metal. Exp Mech 54:1355–1371.  https://doi.org/10.1007/s11340-014-9900-4 CrossRefGoogle Scholar
  16. Coppola T, Cortese L, Folgarait P (2009) The effect of stress invariants on ductile fracture limit in steels. Eng Fract Mech 76:1288–1302.  https://doi.org/10.1016/j.engfracmech.2009.02.006 CrossRefGoogle Scholar
  17. Deng N, Kuwabara T, Korkolis YP (2015) Cruciform specimen design and verification for constitutive identification of anisotropic sheets. Exp Mech 55:1005–1022.  https://doi.org/10.1007/s11340-015-9999-y CrossRefGoogle Scholar
  18. Dick CP, Korkolis YP (2015) Anisotropy of thin-walled tubes by a new method of combined tension and shear loading. Int J Plast 71:87–112.  https://doi.org/10.1016/j.ijplas.2015.04.006 CrossRefGoogle Scholar
  19. Dunand M, Mohr D (2010) Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals. Int J Solids Struct 47:1130–1143.  https://doi.org/10.1016/j.ijsolstr.2009.12.011 CrossRefGoogle Scholar
  20. Dunand M, Mohr D (2011) Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading. Eng Fract Mech 78:2919–2934.  https://doi.org/10.1016/j.engfracmech.2011.08.008 CrossRefGoogle Scholar
  21. Ghahremaninezhad A, Ravi-Chandar K (2011) Ductile failure in polycrystalline OFHC copper. Int J Solids Struct 48:3299–3311.  https://doi.org/10.1016/j.ijsolstr.2011.07.001 CrossRefGoogle Scholar
  22. Ghahremaninezhad A, Ravi-Chandar K (2012) Ductile failure behavior of polycrystalline Al 6061–T6. Int J Fract 174:177–202.  https://doi.org/10.1007/s10704-012-9689-z CrossRefGoogle Scholar
  23. Giagmouris T, Kyriakides S, Korkolis YP, Lee L-H (2010) On the localization and failure in aluminum shells due to crushing induced bending and tension. Int J Solids Struct 47:2680–2692.  https://doi.org/10.1016/j.ijsolstr.2010.05.023 CrossRefGoogle Scholar
  24. Gologanu M, Leblond J-B, Devaux J (1993) Approximate models for ductile metals containing non-spherical voids–case of axisymmetric prolate ellipsoidal cavities. J Mech Phys Solids 41:1723–1754.  https://doi.org/10.1016/0022-5096(93)90029-F CrossRefGoogle Scholar
  25. Gurson AL (1977) Continuum theory of ductile rupture by void nucleation and growth: part I-yield criteria and flow rules for porous ductile media. J Eng Mater Technol 99:2–15CrossRefGoogle Scholar
  26. Ha J, Baral M, Korkolis YP (2018) Plastic anisotropy and ductile fracture of bake-hardened AA6013 aluminum sheet. J Solids Struct Int 155:123–139.  https://doi.org/10.1016/J.IJSOLSTR.2018.07.015 CrossRefGoogle Scholar
  27. Haltom SS, Kyriakides S, Ravi-Chandar K (2013) Ductile failure under combined shear and tension. Int J Solids Struct 50:1507–1522.  https://doi.org/10.1016/j.ijsolstr.2012.12.009 CrossRefGoogle Scholar
  28. Hancock JW, Mackenzie AC (1976) On the mechanisms of ductile failure in high-strength steels subjected to multi-axial stress-states. J Mech Phys Solids 24:147–160.  https://doi.org/10.1016/0022-5096(76)90024-7 CrossRefGoogle Scholar
  29. Hartlieb M (2013) High integrity diecasting for structural applications. IMDC meeting, Worcester, MAGoogle Scholar
  30. Hershey AV (1954) The plasticity of an isotropic aggregate of anisotropic face-centered cubic crystals. J Appl Mech ASME 21:241–249Google Scholar
  31. Hill R (1948) A theory of the yielding and plastic flow of anisotropic metals. Proc R Soc Lond A Math Phys Eng Sci 193:281–297Google Scholar
  32. Hosford WF (1972) A generalized isotropic yield criterion. J Appl Mech 39:607–609CrossRefGoogle Scholar
  33. Hosford WF, Caddell RM (1993) Metal forming: mechanics and metallurgy. Prentice Hall, Englewood CliffsGoogle Scholar
  34. Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21:31–48.  https://doi.org/10.1016/0013-7944(85)90052-9 CrossRefGoogle Scholar
  35. Kim J, Gao X, Srivatsan TS (2004) Modeling of void growth in ductile solids: effects of stress triaxiality and initial porosity. Eng Fract Mech 71:379–400.  https://doi.org/10.1016/S0013-7944(03)00114-0 CrossRefGoogle Scholar
  36. Korkolis YP, Kyriakides S (2008a) Inflation and burst of aluminum tubes. Part II: an advanced yield function including deformation-induced anisotropy. Int J Plast 24:1625–1637.  https://doi.org/10.1016/j.ijplas.2008.02.011 CrossRefGoogle Scholar
  37. Korkolis YP, Kyriakides S (2008b) Inflation and burst of anisotropic aluminum tubes for hydroforming applications. Int J Plast 24:509–543.  https://doi.org/10.1016/j.ijplas.2007.07.010 CrossRefGoogle Scholar
  38. Korkolis YP, Kyriakides S (2009) Path-dependent failure of inflated aluminum tubes. Int J Plast 25:2059–2080.  https://doi.org/10.1016/j.ijplas.2008.12.016 CrossRefGoogle Scholar
  39. Korkolis YP, Kyriakides S (2011) Hydroforming of anisotropic aluminum tubes: part I experiments. Int J Mech Sci 53:75–82.  https://doi.org/10.1016/j.ijmecsci.2010.11.003 CrossRefGoogle Scholar
  40. Korkolis YP, Kyriakides S, Giagmouris T, Lee L-H (2010) Constitutive modeling and rupture predictions of Al-6061-T6 tubes under biaxial loading paths. J Appl Mech Trans ASME 77:064501.  https://doi.org/10.1115/1.4001940 CrossRefGoogle Scholar
  41. Korkolis YP, Barlat F, Kuwabara T (2017) Simplified representations of multiaxial test results in plasticity. In: 5th international conference on material modeling (ICMM5). Rome, ItalyGoogle Scholar
  42. Leblond J-B, Perrin G, Devaux J (1995) An improved Gurson-type model for hardenable ductile metals. Eur J Mech A Solids 14:499–527Google Scholar
  43. Logan RW, Hosford WF (1980) Upper-bound anisotropic yield locus calculations assuming \(\langle 111\rangle \)-pencil glide. Int J Mech Sci 22:419–430.  https://doi.org/10.1016/0020-7403(80)90011-9 CrossRefGoogle Scholar
  44. Lou Y, Huh H (2013) Extension of a shear-controlled ductile fracture model considering the stress triaxiality and the Lode parameter. Int J Solids Struct 50:447–455.  https://doi.org/10.1016/j.ijsolstr.2012.10.007 CrossRefGoogle Scholar
  45. Lou Y, Yoon JW (2017) Anisotropic ductile fracture criterion based on linear transformation. Int J Plast 93:3–25.  https://doi.org/10.1016/J.IJPLAS.2017.04.008 CrossRefGoogle Scholar
  46. Lou Y, Huh H, Lim S, Pack K (2012) New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals. Int J Solids Struct 49:3605–3615.  https://doi.org/10.1016/j.ijsolstr.2012.02.016 CrossRefGoogle Scholar
  47. Mae H, Teng X, Bai Y, Wierzbicki T (2007) Calibration of ductile fracture properties of a cast aluminum alloy. Mater Sci Eng A 459:156–166.  https://doi.org/10.1016/J.MSEA.2007.01.047 CrossRefGoogle Scholar
  48. McClintock FA (1968) A criterion for ductile fracture by the growth of holes. J Appl Mech 35:363–371CrossRefGoogle Scholar
  49. Meyers MA, Chawla KK (1984) Mechanical metallurgy: principles and applications. Prentice-Hall, Englewood CliffsGoogle Scholar
  50. Miyauchi K (1984) A proposal for a planar simple shear test in sheet metals. Sci Pap RIKEN 81:27–42Google Scholar
  51. Mohr D, Henn S (2007) Calibration of stress-triaxiality dependent crack formation criteria: a new hybrid experimental-numerical method. Exp Mech 47:805–820.  https://doi.org/10.1007/s11340-007-9039-7 CrossRefGoogle Scholar
  52. Mohr D, Marcadet SJ (2015) Micromechanically-motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities. Int J Solids Struct 67–68:40–55.  https://doi.org/10.1016/j.ijsolstr.2015.02.024 CrossRefGoogle Scholar
  53. Nahshon K, Hutchinson JW (2008) Modification of the Gurson Model for shear failure. Eur J Mech A/Solids 27:1–17.  https://doi.org/10.1016/j.euromechsol.2007.08.002 CrossRefGoogle Scholar
  54. Oh SI, Chen CC, Kobayashi S (1979) Ductile fracture in axisymmetric extrusion and drawing-Part2: workability in extrusoin and drawing. J Eng Ind 101:36–44.  https://doi.org/10.1115/1.3439471 CrossRefGoogle Scholar
  55. Oyane M, Sato T, Okimoto K, Shima S (1980) Criteria for ductile fracture and their applications. J Mech Work Technol 4:65–81.  https://doi.org/10.1016/0378-3804(80)90006-6 CrossRefGoogle Scholar
  56. Pack K, Marcadet SJ (2016) Numerical failure analysis of three-point bending on martensitic hat assembly using advanced plasticity and fracture models for complex loading. Int J Solids Struct 85–86:144–159.  https://doi.org/10.1016/J.IJSOLSTR.2016.02.014 CrossRefGoogle Scholar
  57. Papasidero J, Doquet V, Mohr D (2015) Ductile fracture of aluminum 2024–T351 under proportional and non-proportional multi-axial loading: Bao–Wierzbicki results revisited. Int J Solids Struct 69–70:459–474.  https://doi.org/10.1016/j.ijsolstr.2015.05.006 CrossRefGoogle Scholar
  58. Pardoen T, Hutchinson J (2000) An extended model for void growth and coalescence. J Mech Phys Solids 48:2467–2512.  https://doi.org/10.1016/S0022-5096(00)00019-3 CrossRefGoogle Scholar
  59. Paredes M, Lian J, Wierzbicki T, Cristea ME, Münstermann S, Darcis P (2018) Modeling of plasticity and fracture behavior of X65 steels: seam weld and seamless pipes. Int J Fract 213:17–36.  https://doi.org/10.1007/s10704-018-0303-x CrossRefGoogle Scholar
  60. Rice JR, Tracey DM (1969) On the ductile enlargement of voids in triaxial stress fields. J Mech Phys Solids 17:201–217.  https://doi.org/10.1016/0022-5096(69)90033-7 CrossRefGoogle Scholar
  61. Roth CC, Mohr D (2014) Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: experiments and modeling. Int J Plast 56:19–44.  https://doi.org/10.1016/j.ijplas.2014.01.003 CrossRefGoogle Scholar
  62. Roth CC, Mohr D (2016) Ductile fracture experiments with locally proportional loading histories. Int J Plast 79:328–354.  https://doi.org/10.1016/j.ijplas.2015.08.004 CrossRefGoogle Scholar
  63. Scales M, Tardif N, Kyriakides S (2016) Ductile failure of aluminum alloy tubes under combined torsion and tension. Int J Solids Struct 97–98:116–128.  https://doi.org/10.1016/J.IJSOLSTR.2016.07.038 CrossRefGoogle Scholar
  64. Sharpe W (ed) (2010) Handbook of experimental solid mechanics. Springer, BerlinGoogle Scholar
  65. Shukla A, Dally JW (2010) Experimental solid mechanics. College House Enterprises, KnoxvilleGoogle Scholar
  66. Sung JH, Kim JH, Wagoner RH (2010) A plastic constitutive equation incorporating strain, strain-rate, and temperature. Int J Plast 26:1746–1771.  https://doi.org/10.1016/j.ijplas.2010.02.005 CrossRefGoogle Scholar
  67. Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1:1–18.  https://doi.org/10.1016/0022-5096(52)90002-1 CrossRefGoogle Scholar
  68. Tardif N, Kyriakides S (2012) Determination of anisotropy and material hardening for aluminum sheet metal. Int J Solids Struct 49:3496–3506.  https://doi.org/10.1016/j.ijsolstr.2012.01.011 CrossRefGoogle Scholar
  69. Thomason PF (1990) Ductile fracture of metals. Pergamon Press, New YorkGoogle Scholar
  70. Tian H, Brownell B, Baral M, Korkolis YP (2017) Earing in cup-drawing of anisotropic Al-6022-T4 sheets. Int J Mater Form 10:329–343.  https://doi.org/10.1007/s12289-016-1282-y CrossRefGoogle Scholar
  71. Till E, Hackl B (2013) Calibration of plasticity and failure models for AHSS sheets. In: Proceedings of the international deep drawing research conference IDDRG 2013Google Scholar
  72. Toda H, Oogo H, Tsuruta H, Horikawa K, Uesugi K, Takeuchi A, Suzuki Y, Kobayashi M (2012) Origin of ductile fracture in aluminum alloys. In: ICAA13 Pittsburgh. Springer International Publishing, Cham, pp 565–570. https://doi.org/10.1007/978-3-319-48761-8_83
  73. Tvergaard V, Needleman A (1984) Analysis of the cup-cone fracture in a round tensile bar. Acta Metall 32:157–169.  https://doi.org/10.1016/0001-6160(84)90213-X CrossRefGoogle Scholar
  74. Wang K, Greve L, Wierzbicki T (2015) FE simulation of edge fracture considering pre-damage from blanking process. Int J Solids Struct 71:206–218.  https://doi.org/10.1016/j.ijsolstr.2015.06.023 CrossRefGoogle Scholar
  75. Water S (2000) Standard test method for shear testing of thin aluminum alloy products 11:11–14. https://doi.org/10.1520/B0831-05
  76. Yin Q, Zillmann B, Suttner S, Gerstein G, Biasutti M, Tekkaya AE, Wagner MF-X, Merklein M, Schaper M, Halle T, Brosius A (2014) An experimental and numerical investigation of different shear test configurations for sheet metal characterization. Int J Solids Struct 51:1066–1074.  https://doi.org/10.1016/J.IJSOLSTR.2013.12.006 CrossRefGoogle Scholar
  77. Yoon JW, Barlat F, Dick RE, Karabin ME (2006) Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int J Plast 22:174–193.  https://doi.org/10.1016/j.ijplas.2005.03.013 CrossRefGoogle Scholar
  78. Zhang X, Wierzbicki T (2015) Characterization of plasticity and fracture of shell casing of lithium-ion cylindrical battery. J Power Sources 280:47–56.  https://doi.org/10.1016/j.jpowsour.2015.01.077 CrossRefGoogle Scholar
  79. Zhang K, Bai J, François D (2001) Numerical analysis of the influence of the Lode parameter on void growth. Int J Solids Struct 38:5847–5856.  https://doi.org/10.1016/S0020-7683(00)00391-7 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and CAMMI – Center for Advanced Materials and Manufacturing InnovationUniversity of New HampshireDurhamUSA
  2. 2.Department of Integrated Systems EngineeringThe Ohio State UniversityColumbusUSA

Personalised recommendations